


- 1. Составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа.
- 2. Найти все токи в ветвях электрической цепи (рис.), пользуясь методом контурных токов или узловых потенциалов.
- 3. Составить баланс мощностей для заданной схемы.

Варианты к заданию 1

№	E_1 ,	E_2 ,	E_3 ,	R_{01} ,	R_{02} ,	R_{03} ,	R_1 ,	R_2 ,	R_3 ,	R_4 ,	R_5 ,	R_6 ,
вари- анта	В	В	В	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом
*					3		041					820
1	22	24	10	0,2	101 8	1,2	2	1	8	4	10	6
2	55	18	4	0,8		0,8	8	4	3	2	4	4
3	36	10	25	17 <u>1</u> 8	0,4	0,5	4	8	3	1	2	7
4	16	5	32	-	0,6	0,8	9	3	2	4	1	5
5	14	25	28	0,9	1,2	8 - 8	5	2	8	2	2	6
6	20	22	9	0,1	 0	1,1	1	2	6	3	8	4
7	5	16	30	0,4	50 5	0,7	6	4	3	2	5	3
8	10	6	24	0,8	0,3		3,5	5	6	6	3	1
9	6	20	4	0170	0,8	1,2	4	6	4	4	3	3
10	21	4	10		0,2	0,6	5	7	2	8	1	1
11	4	9	18	0,8	-	0,7	2,7	10	4	8	10	2
12	4	24	6	0,9	2003	0,5	9	8	1	6	10	4
13	16	8	9	0,2	0,6		2,5	6	6	5	10	5
14	48	12	6	0,8	0,4	8 78 8	4,2	4	2	12	6	2
15	12	36	12	-	0,4	1,2	3,5	5	1	5	6	8
16	12	6	36	1,2	0,6	76—8	2	3	8	5	7	3
17	8	6	6	1,3	246	1,2	3	2	1	6	8	6
18	72	12	6	0,7	1,5	_	6	1	10	4	12	4
19	12	48	12	8 - 8	0,4	0,4	2,5	1	4	15	2	2
20	12	30	48	0,5	87.5	0,5	3,5	2	3	3	1	3
21	9	6	30	71—3	1	0,8	4,5	2	8	13	4	3
22	15	63	6	1	_	1,2	5	3	1	2	12	3
23	54	24	63	3	1,2	0,9	8	3	1	4	2	2
24	36	9	24	S-8	0,8	0,8	3	4	2	1	5	1
25	3	66	9	10-21	0,7	1,2	1	4	2	2	7	3
26	12	30	66	1	0,4	3-3	1	5	1	1	6	4
27	30	16	30	0,6	0,8		2	5	3	1	8	5
28	10	32	16	0,6	_	1	1,5	6	1	7	1	5
29	5	10	32	0,3	0,8	0,8	1,2	6	3	2	2	2
30	40	25	8	-	0,2	0,2	3	3	2	4	3	2

