РАСЧЕТ СИЛОВОГО КОНДЕНСАТОРА ДЛЯ ПОВЫШЕНИЯ КОЭФФИЦИЕНТА МОЩНОСТИ ЭЛЕКТРОУСТАНОВОК ЧАСТОТОЙ 50 Гп

Задание:

- 1) определить емкость конденсатора для сети заданного класса напряжения частотой 50 Гц и требуемой реактивной мощности;
- 2) определить число последовательно включенных секций по характеристикам диэлектрических материалов и рабочему напряжению конденсатора;
- 3) определить размеры и число параллельных секций конденсатора;
- 4) рассчитать удельные потери в секциях конденсатора.

ОСНОВНЫЕ СВЕДЕНИЯ

Конденсатор - это устройство, имеющее два или более проводника (обкладки), разделенные электрической изоляцией, м предназначенное для использования его электрической емкости. Одной из многих разнообразных задач, решаемых с применением конденсаторов, является повышение коэффициента мощности электроустановок. Принципиальная электрическая схема конденсатора исключительно проста. Вместе с тем, достижение высоких эксплуатационных характеристик (удельной емкости, удельной энергии и др.) требует знания свойств электротехнических материалов и умения правильно конструировать изоляцию. Без соответствующих расчетов удельная энергия силовых конденсаторов может отклоняться на несколько порядков. Она зависит от выбранного изоляционного материала, принятого режима работы конденсатора и требуемого срока его эксплуатации.

Расчет конденсатора обычно включает в себя следующие этапы:

- 1)выбор электроизоляционного материала;
- 2)выбор рабочей напряженности поля;
- 3)расчет толщины изоляции и числа последовательно включенных секций, представляющих собой самостоятельные диэлектрические конструкции, обладающие электрической емкостью и являющиеся основой построения конденсатора;
- 4) определение размеров и числа параллельных секций;
- 5)компоновка секций;
- 6)выбор защиты от атмосферных воздействий;
- 7) расчет температуры в изоляции конденсатора;
- 8) определение срока службы конденсатора при заданной вероятности безотказной работы;
- 9) уточнение размеров конденсатора.
- В рамках курсовой работы студентам требуется выполнить лишь часть перечисленных выше этапов расчета конденсатора, а именно, требуется:
- 1) рассчитать емкость конденсатора;
- 2) определить число последовательно включенных секций;
- 3) рассчитать число и размеры параллельных секций;
- 4)вычислить диэлектрические потери и потери в обкладках конденсатора.

Расчет требуется провести в приложении к конденсатору с бумажно- трихлордифениловой изоляцией, предназначенному для работы в. электроустановках с классом напряжения Uн и имеющему реактивную мощность Q. Конденсатор состоит из 3-х сборок секций, которые соединяются между собой в звезду или в треугольник. Бумага, используемая в изоляции между обкладками конденсатора, имеет толщину $\mathfrak{b}_{1,}$, а число ее слоев между обкладками равно \mathfrak{n}_{1} . Рабочая напряженность поля равна $E_{\text{раб}}$.

Таблица 2.1

Класс напряжения, Uн, кВ	3	6	10	15	20	35	110	150	220	330	500
Наибольшие рабочие	3.6	7.2	12	17.5	24	40.5	126	172	252	363	525
напряжения											
электрооборудов ания U _{ра6} ,кВ											
$ann O_{pa6}, KD$											

Емкость конденсатора следует рассчитывать по классу напряжения электроустановки $U_{\rm H}$, а определение характеристик изоляции следует проводить по наибольшему рабочему напряжению Upa6. Класс напряжения равен номинальному линейному напряжению сети. Величина $U_{\rm pa6}$ устанавливается для каждого класса напряжения. Она равна предельному значению напряжения, которое изоляция в электроустановках должна выдерживать в течение неограниченного времени воздействия. Величина наибольшего напряжения $U_{\rm pa6}$, как и величина $U_{\rm H}$, является линейным напряжением и определяется стандартом. Ниже, в таблице 2.1, приведены значения $U_{\rm H}$ и соответствующие им $U_{\rm pa6}$.

Расчет емкости конденсатора

При соединении сборных секций конденсатора в треугольник на каждую из них будет действовать линейное напряжение. Тогда требуемая емкость одной сборки $C_{\rm ef}$ может быть найдена из следующей формулы реактивной мощности:

$$Q_{\Delta} = 3 U_{H}^{2} \omega C_{c6\Delta}$$
 (2.1)

При соединении сборок в звезду реактивная мощность конденсатора равна:

$$Q_*=3(U_{H}/\sqrt{3})^2\omega C_{c6}*=U_{H}\omega C_{c6}*$$
(2.2)

Из формул (2.1) и (2.2) следуют выражения для соответствующих

емкостей $C_{cб\Delta}$ и $C_{cб}$.

Они равны:

$$C_{c6\Delta} = \frac{Q_{\Delta}}{3U_{H}^{2}\omega} \tag{2.3}$$

И

$$C_{c6} = Q_* / U_H^2 \omega \tag{2.4}$$

Здесь $\omega = 2\pi f$ - угловая частота напряжения в сети (f - частота напряжения, обычно равная 50 Γ ц).

При рассмотрении следующих этапов расчетов необходимо учитывать способ соединения сборных секций, мы далее для определенности будем полагать, что сборки секций конденсатора соединены в треугольник. Однако это не отразится ни на порядке расчета, ни на используемых при его проведении формулах.

Определение числа последовательно включенных секций

Для заданной толщины бумаги δ_1 , и принятого числа ее слоев n_1

между обкладками конденсатора можно по расчетной рабочей напряженности поля $E_{\text{раб. p.}}$, характерной для заданного типа изоляционной конструкции, найти расчетное число последовательно включенных секций

 $n_{\text{посл.р.}}$. Оно равно:

$$n_{\text{посл.р}} = U_{\text{раб}} / E_{\text{раб. p.}} n_1 \delta_1$$
 (2.5)

Число п $_{\text{посл.р.}}$, найденное по формуле. (2.5), следует затем принять равным ближайшему целому числу. Замена расчетного числа п $_{\text{посл.p.}}$ ближайшим целым числом п $_{\text{посл.}}$ требует соответствующего пересчета величины $E_{\text{раб.}}$ по формуле

$$E_{pa6} = U_{pa6} / n_{nocn} n_1 \delta_1$$
 (2.6)

Тогда с учетом $E_{\text{раб.}}$ рабочее напряжение отдельной секции $U_{\text{с. раб.}}$ будет равно:

$$U_{c. pa\delta} = E_{pa\delta} n_1 \delta_1$$
 (2.7)

Расчет размеров и числа параллельных секций

Отдельная секция конденсатора с бумажно-жидкостной изоляцией обычно представляет собой рулон из двух фольговых электродов, между которыми укладывается несколько слоев бумаги (или пленки). Оптимальным считается размещение между электродами 6-10 слоев бумаги. Сначала фольга и бумага вместе сворачиваются в круглые рулоны, а затем они спрессовываются в овальные секции. Толщина спрессованной секции обозначается ; длина секции, обозначаемая b, примерно равна ширине фольги, а ширина секции обозначается h. По заданным в задании величинам , b и h определим длину закраин AL, т.е. линейный размер, на который изоляционный материал выступает за край одной из обкладок конденсатора для предотвращения ее контакта с другой обкладкой или перекрытия по поверхности диэлектрика. Она находится по формуле:

$$\Delta L = \kappa_3 U_{\text{HCII.C.}} + L_1 \tag{2.8}$$

где κ_3 - коэффициент закраины ; при работе секции в жидком диэлектрике он принимается равным κ_3 =1,5 - 2,5 м/МВ (при проведении расчетов принять κ_3 равным 1,5 м/МВ);

 $U_{\text{исп.с.}}$ - испытательное напряжение, приходящееся на одну секцию конденсатора; L_1 - технологическое увеличение размера закраин, обусловленное возможным смещением обкладок относительно изолирующей бумаги при изготовлении секций; величина L_1 выбирается в зависимости от технологии изготовления конденсаторов в пределах от 0,5 до 10 мм (в расчетах принять L_1 = 5 мм).

Величина испытательного напряжения секции $U_{\text{исп.с.}}$ определяется по испытательному напряжению всего конденсатора $U_{\text{исп.к.}}$, которое примем равным 2,2 $U_{\text{раб.}}$, тогда

$$U_{\text{исп.с.}} = 2.2 \text{ U}_{\text{раб.}}/n_{\text{посл.}}$$
 (2.9)

С учетом (2.9) по выражению (2.8) величина закраин ΔL равна:

$$\Delta L = (2.2 \text{ U}_{\text{pa6}, \text{K}_3}/\text{n}_{\text{посл.}}) + L_1$$
 (2.10)

Относительную диэлектрическую проницаемость изоляционной бумаги, пропитанной трихлордифенилом, находим по формуле:

$$\varepsilon_{\rm r} = \frac{\varepsilon_{\rm r.np.}}{1 + \frac{\gamma_{\delta}}{\gamma_{\rm K}} \kappa_{\rm 3anp.} \left(\frac{\varepsilon_{\rm r.np.}}{\varepsilon_{\rm r.K.}} - 1\right)}$$
(2.11)

где $\epsilon_{r,np}$ и $\epsilon_{r,\kappa}$ - относительные диэлектрические проницаемости

соответственно пропитывающего состава (трихлордифенила) и клетчатки (бумаги, поры которой пропитаны жидким диэлектриком);

 γ_δ и γ_κ - соответственно плотность бумаги и плотность клетчатки;

 $K_{\text{запр.}}$ - коэффициент запрессовки.

Коэффициент запрессовки $K_{\text{запр.}}$ учитывает изменение толщины изоляции в результате прессования цилиндрических заготовок отдельных секций и превращения их в овальные. В принятой для расчета диэлектрической конструкции конденсатора коэффициент $K_{\text{запр.}}$ равен:

$$K_{3am} = n_1 \delta_1 / \Delta_{\text{M3}} \tag{2.12}$$

где $n_1 \, \delta_1$ - толщина бумаги между обкладками;

 Δ _{из}= Δ_1 + Δ_2 - полная толщина изоляции, которая включает в себя толщину клетчатки Δ_1 , и толщину пропитывающего слоя Δ_2 .

При этом толщина клетчатки равна:

$$\Delta_1 = n_1 \, \delta_1(\gamma_\delta/\gamma_\kappa) \tag{2.13}$$

а толщина пропитывающего слоя может быть найдена из выражения:

$$\Delta_2 = n_1 \, \delta_1 (1 - (\gamma_{\delta} / \gamma_{\kappa}) \, K_{3anp.}) / K_{3anp.}$$
 (2.14)

Обычно коэффициент запрессовки $K_{\text{запр.}}$ составляет величину от 0,8 до 0,95. В рамках данной курсовой работы примем его равным величине, определенной индивидуальным заданием без - проведения соответствующих вычислений. Примем также, что в качестве конденсаторной бумаги используется бумага КОН-1,-плотность которой γ_{δ} составляет 1000 кг/м". Плотность клетчатки γ_{κ} следует принять равной 1550 кг/м³, а ее относительная диэлектрическая проницаемость равна $\varepsilon_{\text{г.к.}}$ =6,6. Учитывая, что диэлектрическая проницаемость пропитывающего жидкого диэлектрика (трихлордифенила) составляет величину $\varepsilon_{\text{г.пр}}$ = 5,0, можно по формуле (2.11) провести расчет диэлектрической проницаемости всей изоляции отдельной секции конденсатора $\varepsilon_{\text{г.}}$

Далее следует определить расчетную электрическую емкость отдельной секции $C_{\text{с.р.}}$, а по ней - расчетное число параллельных секций, необходимых для создания в каждой фазной сборке требуемой емкости $C_{\text{сб.р.}}$.

Емкость отдельной секции равна:

$$C_{c,p} = \varepsilon_r \varepsilon_o(B - 2\Delta L)(h - \Delta_c + \pi/4\Delta_c K_3) \Delta_c K_3^2 / n_1 \delta_1(n_1 \delta_1 + \Delta_\phi)$$
(2.15)

где Δ_{ϕ} – толщина фольги , определяемая индивидуальным заданием по курсовой работе; ε_{o} - электрическая постоянная ($\varepsilon_{o} = 8.85*10^{-12} \, \Phi/\text{M}$).

Расчетное число параллельных секций сборки $n_{\text{пар.р.}}$, позволяющих получить требуемую емкость $C_{\text{сб.}}$, найдем по формуле:

$$N_{\text{пар.р.}} = C_{\text{cf.}} n_{\text{посл.}} / C_{\text{cp.}}$$
 (2.16)

Результат, полученный по формуле (2.16), следует округлить до ближайшего целого числа, т.е. принять $n_{\text{пар.р.}} = n_{\text{пар.}}$. Тогда требуемая емкость отдельной секции тоже должна быть изменена в соответствии с принятым округленным значением числа параллельных секций $n_{\text{пар.}}$. Новое значение C_c получим из выражения:

$$C_c = C_{c6} n_{\text{пост}} / n_{\text{пар}}$$
 (2.17)

Чтобы получить требуемую емкость C_c необходимо изменить один из параметров секции, определяющих ее величину. Изменим толщину секции

 $\Delta_{\rm c}$ на новое значение $\Delta_{\rm c}$ *. Величину $\Delta_{\rm c}$ * можно вычислить по выражению (2.15), преобразовав его к квадратному уравнению относительно искомой величины $\Delta_{\rm c}$ * и взяв положительный корень в его решении.

ВЫЧИСЛЕНИЕ УДЕЛЬНЫХ ПОТЕРЬ В СЕКЦИЯХ КОНДЕНСАТОРА.

Все потери энергии в конденсаторе состоят из диэлектрических потерь и потерь от тока, протекающего в обкладках. Оба вида потерь зависят от температуры материалов конденсатора. Поэтому при расчете потерь необходимо задаться температурой в середине спрессованной секции. Выберем три уровня этой температуры: +70, +40 и +10 °C. Следует принять, что при этих температурах величина тангенса угла диэлектрических потерь составит соответственно: $tg\delta_{70}$,=0.0023; $tg\delta_{40}$ =0,0019; $tg\delta_{10}$ =0,0021.

Расчет электрических потерь в отдельной секции следует провести по формуле:

$$P_{gt} = U_{c pa6}^{2} \omega C_{c} tg \delta_{t}$$
 (2.18)

где $P_{\rm gt}$ - диэлектрические потери в изоляции при температуре t_0 ;

 $U_{c,pa6.}$ - приложенное к изоляции наибольшее рабочее напряжение на секции;

ω - угловая частота;

С_с - емкость изоляции отдельной секции;

 $tg\delta_t$ - тангенс угла диэлектрических потерь при температуре t.

Таким образом, в расчетах следует принять, что приложенное к секции напряжение равно наибольшему рабочему напряжению $U_{\text{сраб.}}$ и не зависит от времени. Нагревом изоляции от воздействия случайных перенапряжений можно пренебречь из-за их малой продолжительности и сравнительно редкого появления.

Емкость электроизоляционной конструкции с некоторыми можно считать не зависящей от времени и температуры. Вместе с тем, температура изоляции, а также частота переменного тока оказывают существенное влияние на $tg\delta_t$.

Поэтому при подсчете диэлектрических потерь значение $tg\delta_t$ должно соответствовать определенной температуре и частоте переменного тока. При вычислениях будем предполагать, что напряжение в сети синусоидально и имеет частоту 50 Гц, а высшие гармоники в его составе отсутствуют. Тогда при расчетах по формуле (2.17) будет варьировать только величина $tg\delta_t$, для трех значений которой получим три значения мощности P_{g70} , P_{g40} , P_{g10} .

Потери в обкладках для каждой из температур найдем по формуле:

$$P_{\phi t} = 1/6(U_c \omega C_c / n)^{2*} (L_a / (b - 2\Delta L) \Delta_{\phi}) * \rho_0 * (1 + 2\alpha_{\phi}(t - t_0))$$
(2.19)

где L_а, - активная длина обкладки секции (см. ниже);

n - число закладных отводов от одной обкладки секции, располагаемой на равном расстоянии друг от друга (в расчетах $P_{\phi t}$ принять n=1);

 ρ_0 - удельное сопротивление материала обкладок при температуре t_0 ;

 α_{φ} - температурный коэффициент сопротивления материала обкладок.

Активная длина обкладок L_a находится по величине емкости секции C_c из выражения:

$$L_a = C_c \Delta_{us} / 2 \varepsilon_r \varepsilon_o (b - 2\Delta L)$$
 (2.20)

Или по формуле (2.21) , полученной из (2.20) с учетом геометрических и других характеристик секции, найденных в результате предыдущих расчетов:

$$L_{a} = \frac{\Delta^{*}_{c} \kappa_{3}}{2(n_{1} \delta_{1} + \Delta_{\Phi})} \left(h - \Delta^{*}_{c} + \frac{\pi}{3} \Delta^{*}_{c} k_{3} \right)$$
(2.21)

Величины ρ_0 и α_{ϕ} необходимые для вычисления потерь в фольге $P_{\phi t}$,

приведены в задании.

Суммарные потери, имеющие место в отдельной секции конденсатора при температурах 70, 40 и 10 °C, определяются суммированием $P_{\rm gt}$ и $P_{\rm \phi t}$:

$$P_{ct} = P_{gt} + P_{\dot{b}\dot{t}} \tag{2.22}$$

Совокупные потери во всех секциях конденсатора получим по формуле:

$$P_{\text{KT}} = n_{\text{посл.}} n_{\text{пар.}} P_{\text{ct}} \tag{2.23}$$

Удельные тепловыделения в секции, т.е. тепловыделения в единице объема секции найдем из выражения:

$$q_{ct} = P_{ct}/(b - 2\Delta L)h\Delta_c \tag{2.24}$$

Этим расчет потерь в секциях конденсатора заканчивается.

ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

№ варианта задания	прианта напряже- я соедин реактивна ия				н обкладками конденсатора				Геометрические размеры спрессованной			Характеристики фольги		
пия.	мощность , Q. кВАр сек	·	изолирую - щей бумаги δ,	слоев	Расч. раб. напряжн -ности поля, Ерас.р.	на		Ширина секции, h, мм	К _{запр.}	а фольги,	Уд.сопро т. материал a , ρ_o , O м*м.	коэф.		
1	6,3	75	Ţ	мкм. 12	6	$\frac{\mathrm{MB}}{\mathrm{M}}$	20	280	160	0,9	8	28*10 ⁻⁹	0,0042	
2 3	10,0 6,0	75 50	\downarrow Δ	10 10	8 7	13 13	25 20	300 250	165 155	0,9 0,9	10 12	28*10 ⁻⁹ 27*10 ⁻⁹	0,0041 0,0043	
4	2,0	50	Ţ	10	10	14	25	250	175	0,85	10	27*10 ⁻⁹	0,0042	
5 6	3,0 10,0	40 40	\downarrow	10 10	7 10	12 14	20 23	200 220	180 170	0,85 0,85	12 10	29*10 ⁻⁹ 29*10 ⁻⁹	0,0040 0,0041	
7 8 9 10	6,3 3,0 10,0 15,0	85 45 70 75		12 12 12 12	6 6 7 8	12 12 13 15	22 23 22 25	280 260 300 300	155 160 165 180	,	8 10 12 8	28*10 ⁻⁹ 27*10 ⁻⁹ 26*10 ⁻⁹ 26*10 ⁻⁹	0,0040 0,0042 0,0043 0,0044	
11	35,0	50	人	12	10	14	23	260	175	0,88	10	27*10 ⁻⁹	0,0044	
12 13 14	6,0 3,0 10,0	70 45 40	$\downarrow \Delta$	12 10 10	8 8 9	13 12 14	21 22 20	280 210 220	170 160 155	0,88 0,91 0,87	12 10 8	28*10 ⁻⁹ 28*10 ⁻⁹ 29*10 ⁻⁹	0,0041 0,0042 0,0041	
15	20,0	35	Ţ	12	10	13	24	230	155	0,85	8	26*10 ⁻⁹	0,0044	
16 17	10,0 35,0	45 35	人 人	10 10	9 10	12 15	24 24	240 200	180 160	,	10 10	27*10 ⁻⁹ 27*10 ⁻⁹	0,0042 0,0042	
18	35,0	70	人	12	9	14	24	210	170	0,91	12	28*10 ⁻⁹	0,0043	

ВОПРОСЫ ДЛЯ ЗАЩИТЫ РАБОТЫ

- 1. В чем суть процесса поляризации диэлектриков? Какие виды поляризации можно выделить и в чем их отличие друг от друга с энергетической точки зрения? Что называется относительной диэлектрической проницаемости диэлектриков?
- 2. Опишите процессы упругой поляризации, а также процессы дипольной, миграционной и сегнетодиэлектрической поляризации. Какие виды поляризации имеют место в изоляции рассчитываемого Вами конденсатора? В каком виде поляризации величина относительной диэлектрической проницаемости будет больше?
- 3. Что называется электропроводностью диэлектриков? Как оценивается электропроводность диэлектрических материалов и конструкций? Что называют током абсорбции и является ли он результатом электропроводности диэлектрика?
- 4. Чем обусловлены потери в.изоляционной конструкции? Приведите схему замещения и объясните роль каждого ее элемента в описании процессов поляризации электропроводников.