МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ИЖЕВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Профессиональная педагогика

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО ФИЗИКЕ

для студентов-заочников инженерно-технических и инженерно-педагогических специальностей

Рекомендовано в качестве методического пособия студентам-заочникам инженерно-технических и инженерно-педагогических специальностей решением кафедры "Профессиональная педагогика" ИжГТУ (протокол № от апреля 2006 г)

Составители: канд.физ.-мат.наук, доцент Булатова Е.Г.

канд.физ.-мат.наук, доцент Бузилов С.В.

Рецензенты: канд.физ.-мат.наук, д-р пед.наук, профессор

Черепанов В.С.

[©] С.В. Бузилов, 2006

Введение

Среди естественных наук одно из важнейших мест занимает физика. Она имеет дело с исходными, наиболее общими фундаментальными закономерностями природы, на основе которых создают свои теоретические построения и совершенствуют свои экспериментальные методы естественные и прикладные науки. Это предопределяет значение курса физики в программах высшей школы, особенно высших технических учебных заведений. На протяжении последних трех столетий развитие техники тесно переплеталось с развитием физики, которая предваряла принципиально новые направления в технике. Наблюдаемый сегодня прогресс во всех областях естествознания связан с проникновением в них физических представлений и методов исследования. И поэтому физика принадлежит к числу фундаментальных наук, составляющих основу теоретической подготовки инженеров и играющих роль той базы, без которой невозможна успешная деятельность инженера в любой области современной техники.

Физика есть наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи, наиболее общие и простые формы движения материи (механические, тепловые, электромагнитные и др.) и их взаимные превращения. Главная цель физики — выявить и объяснить законы природы, которыми определяются все физические явления. Физика - это наука, в которой создаются представления об единстве всего окружающего нас мира. Занимая центральное место среди других наук в объяснении законов природы, физика играет первостепенную роль в формировании научного материалистического мировоззрения, целостной физической картины окружающего нас мира. Физика в наши дни становится важным элементом культуры современной цивилизации.

Основными задачами курса физики в вузах являются:

1. Формирование у студентов диалектико-материалистических представлений об явлениях и процессах, происходящих в природе, что способствует развитию научного мышления, в частности, правильного понимания границ приме-

нимости различных физических понятий, законов, теорий и умения оценивать степень достоверности результатов, полученных с помощью экспериментальных методов исследования. Конкретные физические примеры как нельзя лучше убеждают в том, что знание философии, повседневное применение ее законов являются одним из существенных залогов успешного развития науки и техники, прогресса человеческого общества.

- 2. Усвоение основных физических явлений, их механизмов, законов классической и современной физики, методов физического исследования теоретического фундамента будущей специальности студентов. Эти знания позволят будущим инженерам ориентироваться в потоке научной и технической информации и обеспечат им возможность использования новых физических принципов в тех областях техники, в которых они специализируются. Правильное представление о природе физических явлений особенно важно при постановке новых вопросов, которые всегда возникают в процессе практической деятельности инженера.
- 3. Выработка у студентов приемов и навыков решения конкретных задач из разных областей физики, помогающих студентам в дальнейшем решать инженерные задачи.
- 4. Ознакомление студентов с научной аппаратурой, выработка у студентов начальных навыков проведения экспериментальных исследований различных физических явлений и оценки погрешностей измерений.

Цель настоящего учебно-методического пособия — оказать помощь студентам-заочникам инженерно-технических и инженерно-педагогических специальностей вуза в изучении раздела курса физики «Электричество и магнетизм».

По данному разделу физики в пособии приведена контрольная работа. Перед контрольным заданием приводятся основные законы и формулы, примеры решения задач. Кроме того, в пособии приведены общие методические указания, рабочая программа по указанному разделу физики, примерная схема решения задач, задачи для самостоятельного решения и некоторые справочные материалы.

Сведения, связанные со спецификой изучения курса физики в рамках конкретной специальности данного вуза, сообщаются студентам дополнительно преподавателем.

Общие методические указания

Основной формой обучения студента — заочника является самостоятельная работа над учебным материалом. Для облегчения этой работы организуется чтение лекций, проведение практических занятий и лабораторных работ. Поэтому процесс изучения физики состоит из следующих этапов: 1) проработка установочных и обзорных лекций; 2) самостоятельная работа над учебниками и учебными пособиями; 3) выполнение контрольных работ; 4) прохождение лабораторного практикума; 5) сдача зачетов и экзаменов.

При самостоятельной работе над учебным материалом необходимо:

- 1) составлять конспект, в котором записывать законы и формулы, выражающие эти законы, определения основных физических понятий и сущность физических явлений и методов исследования;
- 2) изучать курс физики систематически, т. к. в противном случае материал будет усвоен поверхностно;
- 3) стараться пользоваться каким-то одним учебником или учебным пособием (или ограниченным числом пособий), чтобы не утрачивалась логическая связь между отдельными вопросами изучаемого раздела курса.

Контрольная работа позволяет закрепить теоретический материал. Решение задач в контрольной работе является проверкой степени усвоения студентом теоретического курса, а рецензии на работу помогают ему доработать и правильно освоить изучаемый раздел курса физики. Перед выполнением контрольной работы студенту необходимо внимательно ознакомиться с примерами решения задач по данной контрольной работе, уравнениями и формулами, а также со справочными материалами. Прежде чем приступить к решению той или иной задачи, студент должен хорошо понять ее содержание и поставленные в ней вопросы.

В данное методическое пособие включена одна контрольная работа по разделу курса физики «Электричество и магнетизм». Вариант контрольной работы соответствует двум последним цифрам студенческого билета (зачетной книжки). Определение задач, соответствующих варианту, проводится по предстваленной ниже таблице вариантов.

Вариант	Номера задач в контрольной работе									
1	1	11	21	31	41	51	61	71	81	91
2	2	12	22	32	42	52	62	72	82	92
3	3	13	23	33	43	53	63	73	83	93
4	4	14	24	34	44	54	64	74	84	94
5	5	15	25	35	45	55	65	75	85	95
6	6	16	26	36	46	56	66	76	86	96
7	7	17	27	37	47	57	67	77	87	97
8	8	18	28	38	48	58	68	78	88	98
9	9	19	29	39	49	59	69	79	89	99
10	10	20	30	40	50	60	70	80	90	100
11	10	12	23	34	45	56	67	78	89	100
12	2	13	24	35	46	57	68	79	90	91
13	3	14	25	36	47	58	69	80	81	92
14	4	15	26	37	48	59	70	71	82	93
15	5	16	27	38	49	60	61	72	83	94
16	6	17	28	39	50	51	62	73	84	95
17	7	18	29	40	41	52	63	74	85	96
18	8	19	30	31	42	53	64	75	86	97
19	9	20	21	32	43	54	65	76	87	98
20	1	11	22	33	44	55	66	77	88	99

При выполнении контрольной работы необходимо соблюдать следующие правила:

- 1) контрольную работу выполнять в тетради;
- 2) на титульном листе указывать номер контрольной работы, номер варианта (последняя цифра номера студенческого билета), наименование дисциплины, фамилию и инициалы студента, шифр специальности и номер группы;

- 3) контрольную работу следует выполнять аккуратно, оставляя поля для замечаний рецензента;
- 4) задачу своего варианта переписывать полностью без сокращений, а заданные физические величины выписать отдельно, при этом все числовые величины должны быть переведены в систему СИ;
- 5) для пояснения решения задачи, где это нужно, аккуратно сделать чертеж;
- б) решение задач и используемые формулы должны сопровождаться краткими пояснениями, в пояснениях к задаче необходимо указывать те основные формулы и законы, на которых базируется решение данной задачи;
- 7) решение задачи необходимо сначала сделать в общем виде, т. е. только в буквенных обозначениях, поясняя применяемые при написании формул буквенные обозначения; при получении расчетной формулы, которая нужна для решения конкретной задачи, обязательно приводить ее вывод;
- 8) вычисления следует проводить путем подстановки заданных числовых величин в расчетную формулу; все числовые значения величин, необходимые для решения данной задачи, должны быть выражены в системе СИ;
- 9) проверить единицы измерения величин по расчетной формуле и тем самым подтвердить правильность ее;
- 10) константы (постоянные) физических величин и другие справочные данные выбираются из таблиц;
- 11) при вычислениях используйте калькулятор, точность расчета определяется числом значащих цифр исходных данных;
- 12) в контрольной работе следует указывать учебники и учебные пособия, которые использовались при решении задач;
- 13) если контрольная работа преподавателем не зачтена, то необходимые дополнения и исправления следует выполнять в той же тетради в конце работы; исправления в тексте незачтенной задачи не допускаются;

- 14) буквенные обозначения величин, используемые при решении задач, должны соответствовать общепринятым;
- 15) контрольная работа сдается на проверку не позднее, чем за месяц до начала экзаменационной сессии; сдача работ в период сессии не допускается.

Контрольные работы, представленные без соблюдения указанных правил, а также работы, выполненные не по своему варианту, рассматриваться не будут.

При возвращении работы на повторное рецензирование обязательно представлять работу с первой рецензией.

Во время экзаменационно-лабораторных сессий проводятся лабораторные работы. Цель лабораторного практикума заключается в приобретении соответствующих навыков в проведении физических экспериментов, в обращении с физическими приборами, в опытной проверке основных физических законов, что способствует более глубокому овладению теоретическим материалом.

На экзаменах и зачетах в первую очередь выясняется усвоение основных теоретических положений программы и умение творчески применять полученные знания к решению практических задач. Физическая сущность явлений, законов, процессов должна излагаться четко и достаточно подробно; решать задачи необходимо без ошибок и уверенно. Любая графическая работа должна быть выполнена аккуратно и четко. Только при выполнении этих условий знания по курсу физики могут быть признаны удовлетворительными.

Литература

Трофимова Т.И. Курс физики. М.: Высш. шк., 1985 и др.

Шубин А.С. Курс общей физики. М.: Высш. шк., 1976.

Савельев И.В. Курс общей физики. В 3-х т. М.: Наука, 1989 и др.

Детлаф А.А., Яворский Б.М. Курс физики. М.:Высш. шк., 1989 и др.

Чертов А.Г., Воробьев А.А. Задачник по физике. М.: Высш. шк., 1981 и др.

Трофимова Т.И. Сборник задач по курсу физики. М.: Высш. шк., 1996 и др.

Фирганг Е.В. Руководство к решению задач по курсу общей физики. М.: Высш. шк., 1978.

Яворский Б.М., Детлаф А.А. Справочник по физике. М.: Наука, 1985.

Кибец И.Н., Кибец В.И. Физика: Справочник. Харьков: Фолио; Ростов н/Д: Феникс, 1997.

РАБОЧАЯ ПРОГРАММА

Содержание рабочей программы определено Государственным образовательным стандартом высшего профессионального образования Российской Федерации.

Электростатика

Закон сохранения электрического заряда. Закон Кулона. Электростатическое поле и его напряженность. Принцип суперпозиции полей. Поток вектора напряженности. Теорема Остроградского — Гаусса для электростатического поля в вакууме и ее применение для расчета полей.

Работа сил поля при перемещении заряда. Понятие циркуляции вектора напряженности поля. Потенциальность электростатического поля. Потенциальная энергия заряда и потенциал поля в некоторой точке. Разность потенциалов. Связь между напряженностью и разностью потенциалов.

Электростатическое поле в веществе. Диэлектрики и их типы. Электронная и ориентационная поляризации. Вектор поляризации. Напряженность поля в диэлектрике. Теорема Остроградского – Гаусса для электростатического поля в диэлектрике. Электрическое смещение. Диэлектрическая проницаемость среды.

Проводники в электростатическом поле. Распределение зарядов в проводнике, поле внутри проводника и у его поверхности. Электроемкость уединенного проводника. Конденсаторы. Энергия системы неподвижных точечных зарядов, заряженного проводника, электрического поля. Объемная плотность энергии.

Постоянный электрический ток

Постоянный электрический ток и его характеристики: сила тока, плотность тока. Условия существования электрического тока. Классическая электронная теория электропроводности металлов. Вывод закона Ома и закона Джоуля - Лен-

ца в дифференциальной форме из электронных представлений. Обобщенный закон Ома в интегральной форме. Разность потенциалов, электродвижущая сила, напряжение. Ток в газах. Плазма. Работа выхода электронов из металла. Термо-электронная эмиссия.

Магнетизм

Магнитное поле и его характеристики: магнитная индукция, напряженность магнитного поля. Закон Ампера. Контур с током в магнитном поле. Закон Био-Савара-Лапласа и его применение к расчету полей. Вихревой характер магнитного поля. Теорема о циркуляции вектора магнитной индукции (закон полного тока). Понятие о магнитном потоке. Работа перемещения проводника и контура с током в магнитном поле. Движение заряженных частиц в магнитном поле. Сила Лоренца. Ускорители заряженных частиц. Эффект Холла.

Явление электромагнитной индукции. Закон Фарадея - Ленца и его вывод из электронных представлений. Явление самоиндукции. Индуктивность соленои-да. Токи при замыкании и размыкании цепи. Энергия магнитного поля. Объемная плотность энергии магнитного поля.

Описание магнитного поля в веществе. Классификация материалов по магнитным свойствам. Магнитные моменты атомов. Намагниченность. Элементарная теория диамагнетизма. Парамагнетики. Классическая теория Ланжевена. Магнитная восприимчивость и магнитная проницаемость вещества. Ферромагнетики и их основные свойства. Доменная природа ферромагнетизма.

Основы теории Максвелла для электромагнитного поля. Обобщение закона электромагнитной индукции. Первое уравнение Максвелла. Ток смещения. Обобщение закона полного тока. Второе уравнение Максвелла. Система уравнений Максвелла и их физическое содержание. Следствия из уравнений Максвелла. Значение электромагнитной теории Максвелла.

Электромагнитные колебания и волны

Электрический колебательный контур. Свободные незатухающие и затухающие электромагнитные колебания в колебательном контуре. Дифференциальное уравнение затухающих колебаний, его решение и анализ. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Явление резонанса.

Электромагнитные волны и их свойства. Дифференциальное уравнение электромагнитной волны. Энергия электромагнитных волн. Поток энергии. Вектор Умова-Пойнтинга.

Примерная схема решения задач

К сожалению, не существует единого алгоритма, который позволил бы решить любую физическую задачу. Однако, можно рекомендовать определенную последовательность при решении задач.

Приступая к решению задач по какому-либо разделу, необходимо ознакомиться по учебной литературе и данному методическому пособию с конкретными понятиями и соотношениями этого раздела. Разобрать приведенные в пособии примеры решения задач изучаемого раздела.

При решении задач целесообразно придерживаться следующей схемы:

- 1) по условию задачи представьте себе физическое явление, о котором идет речь. Сделайте краткую запись условия, выразив исходные данные в единицах СИ;
- 2) сделайте, если это необходимо чертеж, схему или рисунок, поясняющий описанный в задаче процесс;
- 3) напишите уравнения или систему уравнений, отображающие физический процесс;
- 4) используя чертежи и условие задачи, преобразуйте уравнения так, чтобы в них входили лишь исходные данные и табличные величины;

- 5) решив задачу в общем виде, проверьте ответ по равенству размерностей величин, входящих в расчетную формулу;
- 6) произведите вычисления и, получив числовой ответ, оцените его реальность.

Задачи для самостоятельного решения

- 1. Вычислить ускорение а, сообщаемое одним электроном другому, находящемуся от первого на расстоянии r=100 мм. [Ответ: $a = \frac{e^2}{4\pi\epsilon_0 r^2 m_e} = 2.5 \cdot 10^8 \,\text{m/c}^2$]
- 2. В вершинах правильного шестиугольника со стороной а помещаются точечные заряды одинаковой величины q. Найти потенциал ϕ и напряженность поля \vec{E} в центре шестиугольника при условии, что: a) знак всех зарядов одинаков, б) знаки соседних зарядов противоположны. [Ответ: a) $\phi = \frac{1}{4\pi\varepsilon\varepsilon_0} \cdot \frac{6q}{a}$; E=0; б) $\phi=0$; E=0]
- 3. Найти потенциал φ и напряженность поля E в центре полусферы радиуса R, заряженной с постоянной поверхностной плотностью σ . Положить $\varepsilon=1$. [Ответ: $\varphi=\frac{R_{\sigma}}{2\varepsilon_{0}}$; $E=\frac{\sigma}{4\varepsilon_{0}}$. Указание. Для нахождения E поместить в центр полусферы начало сферической системы координат, разбить поверхность полусферы на полоски площади $dS=2\pi R^{2}\sin \mathcal{A}\mathcal{B}$].
- 4. Найти взаимную потенциальную энергию W для каждой из систем точечных зарядов, изображенных на рис. 1. Все заряды одинаковы по абсолютной величине и располагаются в вершинах квадрата со стороной а. $1 \quad a^2 \quad = \quad 1 \quad a^2 \quad$

[Otbet: a)
$$W = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{a} (\sqrt{2} + 4)$$
; б) $W = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{a} (\sqrt{2} - 4)$; в) $W = -\frac{1}{4\pi\varepsilon_0} \frac{q^2}{a} \sqrt{2}$]

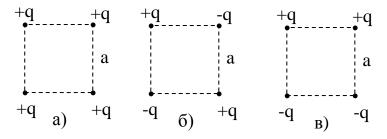


Рис. 1

- 5. На два последовательно соединенных конденсатора C_1 =100 пФ и C_2 =200пФ подано постоянное напряжение U=300 В. Определить напряжения U_1 и U_2 на конденсаторах и заряд q на их обкладках. Какова емкость C системы? [Ответ: U_1 =200 В; U_2 =100 В; q=2·10⁻⁸ Кл; C=66 пФ]
- 6. В однородное электрическое поле напряженностью E=1 кВ/м влетает вдоль силовой линии электрон со скоростью υ_0 =1 Мм/с. Определить расстояние l, пройденное электроном до точки, в которой его скорость υ_1 будет равна половине начальной. [Ответ: $l = \frac{3m}{|e|} \frac{\upsilon_1^2}{E} = 2,13$ мм]
- 7. Определить плотность тока j в железном проводнике длиной 1=10 м, если провод находится под напряжением U=6 В. [Ответ: $j=6,1\cdot10^6$ A/м²]
- 8. На рис. 2 изображена бесконечная цепь, образованная повторением одного и того же звена, состоящего из сопротивлений R_1 =2 Ом и R_2 =4 Ом. Найти сопротивление R этой цепи. [Ответ: $R = \frac{R_1}{2} + \sqrt{\frac{R_1^2}{4} + R_1 R_2} = 4$ Ом. Указание: Поскольку цепь бесконечна, все звенья, начиная со второго, могут быть заменены сопротивлением, равным искомому сопротивлению R].
- 9. Требуется изготовить нагревательную спираль для электрической плитки мощностью 0,50 кВт, предназначенной для включения в цепь с напряжением 220 В. Сколько (в метрах) нужно взять для этого нихромовой проволоки диаметром 0,40 мм? Удельное сопротивление нихрома в нагретом состоянии ρ=1,05⋅10⁻⁶ Ом⋅м.[Ответ: 12 м.]
- 10. Э.д.с. батареи аккумуляторов, э.д.с. ε =12 В, сила тока короткого замыкания равна 5 А. Какую наибольшую мощность P_{max} можно получить во внешней цепи, соединенной с такой батареей? [Ответ: 15 Вт].
- 11. Ток силы I=6,28 A циркулирует в контуре, имеющем форму равнобочной трапеции (рис. 3). Отношение оснований трапеции равно 2,00. Найти магнитную индукцию В в точке A, лежащей в плоскости трапеции. Меньшее основание трапеции l=100 мм, расстояние b=50,0 мм. [Ответ: $B = \mu_0 \frac{I}{4\pi b} \frac{l}{\sqrt{I^2 + 4b^2}} = 8,9 \cdot 10^{-6} \, \text{Тл}$]
- 12. По объему однородного шара массы m и радиуса R равномерно распределен заряд q. Шар приводиться во вращение вокруг своей оси с угловой скоростью ω . Найти возникающее в результате вращения момент количества движения (механический момент) M, магнитный момент p_m и отношение маг-

нитного момента к механическому моменту. [Ответ: $M = \frac{2}{5} mR^2 \omega$;

$$p_{m} = \frac{1}{5} q R^{2} \omega; \frac{p_{m}}{M} = \frac{q}{2m}$$

- 13. Ион, несущий один элементарный заряд, движется в однородном магнитном поле с индукцией B=0,015 Тл по окружности радиусом R=10 см. Определить импульс р иона. [Ответ: $p=2,4\cdot10^{-22}~{\rm kr\cdot m/c}$]
- 14. Электрон движется в магнитном поле с индукцией B=0,02 Тл по окружности радиусом R=1 см. Определить кинетическую энергию T электрона (в джоулях и электрон-вольтах). [Ответ: $T = \frac{B^2 r^2 e^2}{2m_e} = 0,563 \text{ фДж}$]
- 15. По кольцу, сделанному из тонкого гибкого провода радиусом R=10 см, течет ток силой I=100 A. Перпендикулярно плоскости кольца возбуждено магнитное поле с индукцией B=0,1 Тл, по направлению совпадающей с индукцией B_1 собственного магнитного поля кольца. Определить работу A внешних сил, которые, действуя на провод, деформировали его и придали ему форму квадрата. Сила тока при этом поддерживалась неизменной. Работой против упругих сил пренебречь. [Ответ: $A = \frac{\pi}{BR^2(1-\pi/A)}$ =67,5 мДж]
- 16. Проволочный виток радиусом r=4 см, имеющий сопротивление R=0,01 Ом, находится в однородном магнитном поле с индукцией B=0,04 Тл. Плоскость рамки составляет угол α =30° с линиями индукции поля. Какое количество электричества Q протечет по витку, если магнитное поле исчезнет? [Ответ: $Q = \frac{\pi B r^2}{R} \cos \alpha = 10 \text{ мКл}$]
- 17. Замкнутый контур в виде рамки с площадью S=60,0 см² равномерно вращается в однородном магнитном поле с индукцией B=2,00·10⁻² Тл, делая в секунду n=20 оборотов. Ось вращения и направление поля взаимно перпендикулярны. Определить амплитудное $\varepsilon_{\rm m}$ и действующее ε значения э.д.с. в контуре. [Ответ: $\varepsilon_{\rm m} = 2\pi nBS = 15,1$ мВ; $\varepsilon = \frac{\varepsilon_{\rm m}}{\sqrt{2}} = 10,7$ мВ]
- 18. Переменное напряжение, действующее значение которого U=220 B, а частота ν =50 Γ ц, подано на катушку без сердечника с индуктивностью L=3,18·10⁻² Γ н и активным сопротивлением R=10,0 Oм. а) Найти количество тепла Q, выделяющееся в катушке за секунду; б) Как измениться Q, если последова-

тельно с катушкой включить конденсатор емкостью $C = 3.18 \cdot 10^{-5} \Phi$? [От-

вет: а)
$$Q = \frac{RU^2}{R^2 + 4\pi^2 v^2 L^2} = 2,4 \cdot 10^3 \text{ Дж/c}; б)$$
 увеличится в $\sqrt{2}$ раз.]

19. В среде с ε =4,00 и μ =1,00 распространяется плоская электромагнитная волна. Амплитуда электрического вектора волны E_m=200 В/м. На пути волны располагается поглощающая поверхность, имеющая форму полусферы радиуса r=300 мм, обращенная своей вершиной в сторону распространения волны. Какую энергию W поглощает эта поверхность за время t=1,00 мин? [Ответ:

 $W = \frac{1}{2} \sqrt{\frac{\varepsilon \varepsilon_0}{\mu \mu_0}} E_m^2 \pi r^2 t = 1,8 \cdot 10^3 \text{ Дж. Указание. Воспользоваться тем, что t значи-$

тельно больше периода волны Т].

20. Индуктивность L колебательного контура равна 0,5 мГн. Какова должна быть электроемкость C контура, чтобы он резонировал на длину волны $\lambda = 300 i$? [Otbet: 51 $\pi\Phi$]

1. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Основные законы и формулы

Закон сохранения электрического заряда	$q_1 + q_2 + \ldots + q_n = const$
Закон Кулона	$F = \frac{ q_1 \cdot q_2 }{4\pi\varepsilon_0 r^2}$
Напряженность электрического поля	$E = \frac{F}{q}$
Напряженность электрического поля:	
точечного заряда	$E = \frac{q}{4\pi\varepsilon_0 r^2}$
бесконечно длинной заряженной нити	$E = \frac{\tau}{2\pi\varepsilon\varepsilon_0 r}$
равномерно заряженной плоскости	$E = \frac{\sigma}{2\varepsilon_0}$
Линейная плотность заряда	$\tau = \frac{dq}{dl}$
Поверхностная плотность заряда	$\sigma = \frac{dq}{dS}$
Напряженность электрического поля, создаваемого металлической заряженной сферой радиусом R на расстоянии r от ее центра:	

на поверхности сферы (r=R)	$E = \frac{q}{4\pi\varepsilon\epsilon_0 R^2}$
вне сферы (r>R)	$E = \frac{q}{4\pi\varepsilon_0 r^2}$
Электрическое смещение	$D = \mathcal{E}_0 E$
Поток напряженности электрического поля	$\Phi = \int_{S} E_{n} dS$
Теорема Остроградского-Гаусса	$\oint_{S} E_{n} dS = \frac{1}{\varepsilon_{0}} \sum_{i} q_{i}$
Работа перемещения заряда в электрическом поле из точки 1 в точку 2	$D = \mathcal{E}_0 E$ $\Phi = \int_S E_n dS$ $\oint_S E_n dS = \frac{1}{\mathcal{E}_0} \sum_I q_i$ $A = q \int_1^2 E_I dI$ $A = q(\varphi_1 - \varphi_2)$ \vdots $q_1 \cdot q_2 \qquad q_1 \cdot q_2$
Работа перемещения заряда q_1 в электрическом поле заряда q_2 из точки 1 в точку 2 поля	$A = \frac{q_1 \cdot q_2}{4\pi\varepsilon\epsilon_0 r_1} - \frac{q_1 \cdot q_2}{4\pi\varepsilon\epsilon_0 r_2}$
Потенциальная энергия взаимодействия двух точечных зарядов	$W = \frac{q_1 \cdot q_2}{4\pi \varepsilon_0 r}$
Потенциал электрического поля	$\varphi = \frac{W}{q}$
Потенциал электрического поля, создаваемого точечным зарядом	$\varphi = \frac{q}{4\pi \varepsilon_0 r}$
Потенциал электрического поля металлической полой сферы радиусом R на расстоянии r от центра сферы:	
на поверхности и внутри сферы $(r \le R)$	$\varphi = \frac{q}{4\pi\varepsilon_0 R}$
вне сферы $(r \succ R)$	$\varphi = \frac{q}{4\pi\varepsilon\varepsilon_0 r}$
Связь потенциала с напряженностью поля	$E_{l}=-rac{darphi}{dl}$ $E=-gradarphi$
Электроемкость:	
уединенного проводника	$c = \frac{q}{\varphi}$
плоского конденсатора	$c = \frac{q}{U}$ $c = \frac{\mathcal{E}_0 S}{d}$
Электроемкость батареи конденсаторов,	
соединенных	
параллельно	$c = c_1 + c_2 + \dots + c_n$
последовательно	$c = c_1 + c_2 + \dots + c_n$ $\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2} + \dots + \frac{1}{c_n}$

Энергия:	
электрического поля	$W_{9} = \frac{\mathcal{E}_{0}E^{2}V}{2} = \frac{EDV}{2} = \frac{D^{2}V}{2\mathcal{E}_{0}}$
заряженного проводника	$W_{9} = \frac{c\varphi^{2}}{2} = \frac{q^{2}}{2c} = \frac{q\varphi}{2}$ $W_{9} = \frac{cU^{2}}{2} = \frac{q^{2}}{2c} = \frac{qU}{2}$ $W_{9} = \frac{\varepsilon U^{2}}{2} = \frac{ED}{2} = \frac{D^{2}}{2\varepsilon_{0}}$
заряженного конденсатора	$W_{_{9}} = \frac{cU^2}{2} = \frac{q^2}{2c} = \frac{qU}{2}$
Объемная плотность энергии электрического поля	$W_{_{9}} = \frac{\varepsilon_{_{0}}E^{2}}{2} = \frac{ED}{2} = \frac{D^{2}}{2\varepsilon_{_{0}}}$
Сила тока	$I = \frac{dq}{dt}$
Плотность тока	$j = \frac{dI}{dS}$ $I = \frac{U}{R}$
Закон Ома для однородного участка цепи	$I = \frac{U}{R}$
Закон Ома для замкнутой (полной) цепи	$I=\mathcal{E}/(R+r)$
Закон Ома в дифференциальной форме	$j = \gamma E = \frac{E}{\rho}$
Закон Джоуля-Ленца	$j = \gamma E = \frac{E}{\rho}$ $Q = I^{2}Rt = \frac{U^{2}}{R}t = IUt$ $R = \frac{\rho \cdot l}{S}$ $\gamma = \frac{1}{-}$
Сопротивление однородного проводника	$R = \frac{\rho \cdot l}{S}$
Удельная проводимость	$\gamma = \frac{1}{\rho}$
Зависимость удельного сопротивления от температуры	$\rho = \rho_0 (1 + \alpha t)$
Работа тока	$A = IUt = I^2Rt = \frac{U^2}{R}t$
Полная мощность, выделяющаяся в цепи	$N=I\varepsilon=\varepsilon^2/(R+r)$
Правила Кирхгофа:	$\sum_{I} I = 0$ $\sum_{I} IR = \sum_{i} \varepsilon$
Общее сопротивление:	
при последовательном соединении проводников	$R = R_1 + R_2 + \ldots + R_n$
при параллельном соединении проводников	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$
Закон Ампера	$F = IBl\sin\alpha$
Механический момент, действующий на контур с током, помещенный в магнитное поле	$M=p_{_{m}}B\sin\alpha$
Магнитный момент контура с током	$p_m = IS$
Связь магнитной индукции с напряженностью магнитного поля	$B = \mu \mu_0 H$

Закон Био-Савара-Лапласа	$dB = \frac{\mu\mu_0 I \sin \alpha}{4\pi r^2} dl$
Магнитная индукция:	
в центре кругового тока	$B = \frac{\mu \mu_0 I}{2R}$
поля, созданного бесконечно длинным прямым	
проводником с током	$B = \frac{\mu \mu_0 I}{2\pi r}$
поля, созданного отрезком проводника с током	$B = \frac{\mu\mu_0 I}{4\pi r} (\cos\alpha_1 - \cos\alpha_2)$
поля бесконечно длинного соленоида и тороида	$B = \mu \mu_0 nI$
Сила взаимодействия двух прямолинейных бес-	I I
конечно длинных параллельных проводников с	$F = \frac{\mu \mu_0 I_1 I_2}{2\pi d} l$
ТОКОМ	
Закон полного тока	$ \oint_{L} Bdl = \mu_{0} \sum_{I} I $ $ F = q v B \sin \alpha $
Сила Лоренца	$F = q \upsilon B \sin \alpha$
Магнитный поток однородного	$\Phi = BS \cos \alpha$
магнитного поля	$\Psi = BS \cos \alpha$
Работа по перемещению контура с током	A 1A.A.
в магнитном поле	$A = I\Delta\Phi$
Основной закон электромагнитной индукции	$\varepsilon_i = -N \frac{d\Phi}{dt} = -\frac{d\psi}{dt}$
Потокосцепление	$\psi = N\Phi$
Потокосцепление соленоида	$\psi = LI$
Электродвижущая сила самоиндукции	$\varepsilon_{s} = -L \frac{dI}{dt}$ $L = \mu \mu_{0} n^{2} lS$
Индуктивность соленоида	$L = \mu \mu_0 n^2 lS$
Мгновенное значение силы тока в цепи, обладающей сопротивлением R и индуктивностью L	$I = I_0 \exp(-\frac{R}{L}t) + \frac{\varepsilon}{R} \left[1 - \exp(-\frac{R}{L}t) \right]$
Энергия магнитного поля	$W = \frac{LI^2}{2}$
Объемная плотность энергии магнитного поля	$W = \frac{LI^2}{2}$ $\omega = \frac{\mu\mu_0 H^2}{2} = \frac{BH}{2} = \frac{B^2}{2\mu\mu_0}$
Уравнение гармонических колебаний заряда на	
обкладках конденсатора в идеальном колеба-	$q = q_0 \sin(\omega t + \varphi_0)$
тельном контуре	
Период электромагнитных колебаний в	T 2 12
колебательном контуре	$T = 2\pi\sqrt{LC}$
Амплитуда тока при вынужденных колебаниях	$I_0 = \frac{\varepsilon_0}{\sqrt{R^2 + (\omega L - 1/\omega c)^2}}$

Фаза тока при вынужденных колебаниях	$tg\varphi = \frac{L\omega - 1/\omega c}{R}$
Резонансная частота	$\omega_{pes} = \frac{1}{\sqrt{Lc}}$
Действующее значение тока	$I_{\partial} = \frac{I_0}{\sqrt{2}}$
Скорость электромагнитных волн в среде	$\upsilon = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \frac{1}{\sqrt{\varepsilon \mu}} = \frac{c}{\sqrt{\varepsilon \mu}}$
Вектор Пойнтинга	$\vec{P} = \left[\vec{E} \times \vec{H} \right]$

Примеры решения задач

1. С какой силой F_l электрическое поле заряженной бесконечной плоскости действует на единицу длины заряженной бесконечно длинной нити, помещенной в это поле? Линейная плотность заряда на нити τ =3 мкКл/м и поверхностная плотность заряда на плоскости σ =20 мкКл/м².

Дано:

 $\tau=3 \text{ мкКл/м}=3\cdot10^{-6} \text{ Кл/м}$ $\sigma=20 \text{ мкКл/м}^2=20\cdot10^{-6} \text{ Кл/м}^2$

Найти:

 F_1 - ?

Решение:

Заряды плоскости и нити не точечные, они протяженные. Поэтому сила, с которой электрическое поле заряженной бесконечной плоскости действует на заряд бесконечно длинной нити, определяется по формуле: F = qE (1) Электрическое поле создается заряженной бесконечной плоскостью. Напряженность поля заряженной бесконечной плоскости определяется

по формуле:
$$E = \frac{\sigma}{2\varepsilon_0}$$
 (2)

Заряд бесконечно длинной нити находится в поле заряженной бесконечной плоскости. Заряд бесконечно длинной нити определяется по формуле:

$$q = \tau \cdot l \tag{3}$$

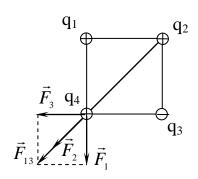
Формула (1) с учетом (2) и (3) принимает вид:

 $F = \frac{\sigma \cdot \tau}{2\varepsilon\varepsilon_0} l$. Тогда сила, действующая на единицу

длины нити, равна $F_l = \frac{F}{l} = \frac{\sigma \cdot \tau}{2 \varepsilon \varepsilon_0}$.

$$F_{I} = \frac{\sigma \cdot \tau}{2\varepsilon\varepsilon_{0}} = \frac{20 \cdot 10^{-6} \cdot 3 \cdot 10^{-6}}{2 \cdot 8,85 \cdot 10^{-12}} = 3,4 \text{ H}$$

Ответ: $F_{l} = 3,4 \text{ H}$


2. В вершинах квадрата со стороной а=9,8 см находятся точечные заряды q_1 =7,5 нКл, q_2 =4,7 нКл, q_3 =-7,5 нКл и q_4 =3,9 нКл. Найти силу, действующую на заряд q_4 .

Дано:

$$a=9,8$$
 см=0,098 м $q_1=7,5$ нКл=7,5·10⁻⁹ Кл $q_2=4,7$ нКл=4,7·10⁻⁹ Кл $q_3=-7,5$ нКл=-7,5·10⁻⁹ Кл $q_4=3,9$ нКл=3,9·10⁻⁹ Кл

Найти:

F - ?

Решение:

В соответствии с принципом суперпозиции поле каждого из зарядов q_1 , q_2 и q_3 действует на заряд q_4 независимо друг от друга. Следовательно, результирующая сила будет равна векторной сумме сил, действующих на заряд q_4 со стороны зарядов q_1 , q_2 и q_3 :

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3$$

Модуль силы, действующей на заряд q_4 со стороны заряда q_1 , равен:

$$F_{1} = \frac{1}{4\pi\varepsilon\varepsilon_{0}} \frac{|q_{1}| \cdot |q_{4}|}{a^{2}} = k \frac{|q_{1}| \cdot |q_{4}|}{a^{2}}$$

$$F_{1} = 9 \cdot 10^{9} \frac{7.5 \cdot 10^{-9} \cdot 3.9 \cdot 10^{-9}}{(0.098)^{2}} = 27.4 \cdot 10^{-6} H$$

Модуль силы, действующей на заряд q_4 со стороны заряда q_2 , равен:

$$F_{2} = \frac{1}{4\pi\varepsilon\varepsilon_{0}} \frac{|q_{2}| \cdot |q_{4}|}{2a^{2}} = k \frac{|q_{2}| \cdot |q_{4}|}{2a^{2}}$$

$$F_{2} = 9 \cdot 10^{9} \frac{4.7 \cdot 10^{-9} \cdot 3.9 \cdot 10^{-9}}{2 \cdot (0.098)^{2}} = 8.6 \cdot 10^{-6} H$$

Модуль силы, действующей на заряд q_4 со стороны заряда q_3 , равен:

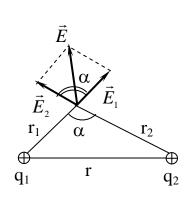
$$F_{3} = \frac{1}{4\pi\varepsilon\varepsilon_{0}} \frac{|q_{3}| \cdot |q_{4}|}{a^{2}} = k \frac{|q_{3}| \cdot |q_{4}|}{a^{2}}$$

$$F_{3} = 9 \cdot 10^{9} \frac{7.5 \cdot 10^{-9} \cdot 3.9 \cdot 10^{-9}}{(0.098)^{2}} = 27.4 \cdot 10^{-6} H$$

Так как $F_1=F_3$, то их геометрическая сумма вектор \vec{F}_{13} направлен так же, как и вектор \vec{F}_2 . Следовательно, результирующая сила, действующая на заряд q_4 , равна:

$$F=F_2+F_{13},$$
 где $F_{13}=\sqrt{F_1^2+F_3^2}=F_1\sqrt{2}$
$$F=8.6\cdot10^{-6}+27.4\cdot10^{-6}\cdot\sqrt{2}=47.3\cdot10^{-6}\,H=47.3$$
мк H

Ответ: F = 47,3 мкН


3. Расстояние между зарядами q_1 и q_2 , находящимися в вакууме, равно 8 см. Определить напряженность и потенциал поля в точке, находящейся на расстоянии r_1 =6 см от первого заряда и r_2 =4 см от второго заряда. Рассмотреть случаи: а) q_1 =1 нКл и q_2 =1 нКл; б) q_1 =1 нКл и q_2 =-1 нКл.

Дано:

$$r=8 \text{ cm}=0.08 \text{ M}$$
 $|q_1|=|q_2|=1 \text{ HK}_{\Pi}=$
 $=1\cdot10^{-9} \text{ K}_{\Pi}$
 $r_1=6 \text{ cm}=0.06 \text{ M}$
 $r_2=4 \text{ cm}=0.04 \text{ M}$

Найти:

φ - ?

Решение:

Поле создается двумя зарядами q_1 и q_2 , следовательно, в соответствии с принципом суперпозиции напряженность поля системы зарядов равна векторной сумме напряженностей полей, создаваемых каждым зарядом в отдельности: $\vec{E} = \vec{E}_1 + \vec{E}_2$

а) Так как заряды q_1 и q_2 положительные, то вектора напряженности \vec{E}_1 и \vec{E}_2 направлены по линии напряженности от зарядов. Модуль вектора \vec{E} находится по теореме косинусов:

$$E = \sqrt{E_1^2 + E_2^2 + 2E_1 E_2 \cos \alpha}, \qquad (1)$$

гле

$$\cos\alpha = \frac{r^2 - r_1^2 - r_2^2}{2r_1r_2} = \frac{0,0064 - 0,0036 - 0,0016}{2 \cdot 0,06 \cdot 0,04} = 0,25 \quad (2)$$

Напряженность поля точечного заряда:

$$E = \frac{q}{4\pi\varepsilon\varepsilon_0 r^2} = k\frac{q}{\varepsilon\cdot r^2}$$
, где ε - диэлектрическая проница-

емость среды; ϵ_0 – электрическая постоянная; r – расстояние от заряда до точки поля, в которой определяется его напряженность; $k = \frac{1}{4\pi\epsilon_0} = 9 \cdot 10^9 \text{ (H·m}^2)/\text{Кл}^2 - \text{коэф-}$

фициент пропорциональности.

Напряженность поля точечного заряда q₁:

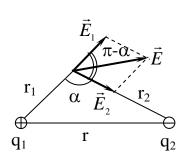
$$E_{1} = \frac{q_{1}}{4\pi\varepsilon\varepsilon_{0}r_{1}^{2}} = \frac{9\cdot10^{9}\cdot10^{-9}}{36\cdot10^{-4}} = 2500 \text{ B/m}$$
 (3)

Напряженность поля точечного заряда q2:

$$E_2 = \frac{q_2}{4\pi\varepsilon\varepsilon_0 r_2^2} = \frac{9 \cdot 10^9 \cdot 10^{-9}}{16 \cdot 10^{-4}} = 5625 \text{ B/m}$$
 (4)

Подставляя (2), (3), и (4) в (1), найдем напряженность:

$$E = \sqrt{2500^2 + 5625^2 + 2 \cdot 2500 \cdot 5625 \cdot 0,25} = 6702 \text{ B/m}$$


Согласно принципу суперпозиции потенциал поля системы зарядов равен алгебраической сумме потенциалов полей, создаваемых каждым зарядом в отдельности:

$$\varphi = \varphi_1 + \varphi_2 \tag{5}$$

Потенциал поля точечного заряда: $\varphi = \frac{q}{4\pi\varepsilon\varepsilon_0 r} = k\frac{q}{\varepsilon\cdot r}$

Следовательно,

$$\varphi = \frac{q_1}{4\pi\varepsilon\varepsilon_0 r_1} + \frac{q_2}{4\pi\varepsilon\varepsilon_0 r_2} = \frac{9\cdot10^9\cdot10^{-9}}{0,06} + \frac{9\cdot10^9\cdot10^{-9}}{0,04} = 150 + 225 = 375 \text{ B}$$

б) Так как заряд q_1 положительный, то вектор напряженности \vec{E}_1 направлен по линии напряженности от заряда, а заряд q_2 отрицательный, то вектор напряженности \vec{E}_2 направлен по линии напряженности к заряду. Модуль вектора \vec{E} находится по теореме косинусов:

$$E = \sqrt{E_1^2 + E_2^2 + 2E_1 E_2 \cos(\pi - \alpha)},$$
 (6)

где

$$\cos(\pi - \alpha) = -\cos\alpha = -0.25 \tag{7}$$

Напряженность поля точечного заряда q_1 определяется по формуле (3), напряженность поля точечного заряда q_2 определяется по формуле (4).

Подставляя (7), (3), и (4) в (6), найдем напряженность:

$$E = \sqrt{2500^2 + 5625^2 - 2 \cdot 2500 \cdot 5625 \cdot 0,25} = 5555 \text{ B/m}$$

Потенциал поля определяется согласно (5):

$$\varphi = \frac{q_1}{4\pi\varepsilon\varepsilon_0 r_1} + \frac{q_2}{4\pi\varepsilon\varepsilon_0 r_2} = \frac{9\cdot10^9\cdot10^{-9}}{0.06} + \frac{9\cdot10^9\cdot(-10^{-9})}{0.04} =$$

$$=150-225=-75$$
 B

Ответ: a) E=6702 B/м=6,7 кB/м; $\varphi = 375$ B;

б) E=5555 B/м=5,6 кВ/м ;
$$\varphi$$
 = -75 B

4. Электростатическое поле создается положительно заряженной бесконечной нитью. Протон, двигаясь от нити под действием поля вдоль линии напряженности с расстояния r_1 =1 см до r_2 =5 см, изменил свою скорость от 1 до 10 Мм/с. Определить линейную плотность заряда нити.

Дано:

$$r_1$$
=1 cm=0,01 m
 r_2 =5 cm=0,05 m
 v_1 =1 Mm/c=10⁶ m/c
 v_2 =10 Mm/c=10·10⁶ m/c

Найти:

 τ - ?

Решение:

Работа, совершаемая силами электростатического поля при перемещении протона из точки 1 в точку 2:

$$A = q_p(\varphi_1 - \varphi_2), \tag{1}$$

где q_p – заряд протона.

Бесконечная равномерно заряженная нить с линейной плотностью заряда τ создает аксиально симметричное

поле напряженностью $E = \frac{\tau}{2\pi\varepsilon\varepsilon_0 r}$. Напряженность и

потенциал поля связаны соотношением $E = -\frac{d\varphi}{dr}$ и, следовательно, $d\varphi = -Edr$. Разность потенциалов точек поля на расстоянии \mathbf{r}_1 и \mathbf{r}_2 от нити

$$\varphi_{1} - \varphi_{2} = -\int_{r_{2}}^{r_{1}} E dr = -\frac{\tau}{2\pi\varepsilon\varepsilon_{0}} \int_{r_{2}}^{r_{1}} \frac{dr}{r} = \frac{\tau}{2\pi\varepsilon\varepsilon_{0}} \ln\frac{r_{2}}{r_{1}}$$
(2)

Подставляем (2) в формулу (1) и получаем:

$$A = \frac{q_p \tau}{2\pi \varepsilon \varepsilon_0} \ln \frac{r_2}{r_1} \tag{3}$$

С другой стороны, работа равна изменению кинетической энергии протона:

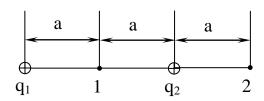
$$A = K_2 - K_1 = \frac{mv_2^2}{2} - \frac{mv_1^2}{2} \tag{4}$$

Приравняв выражения (3) и (4), найдем линейную плотность заряда нити:

$$\tau = \frac{\pi \varepsilon \varepsilon_0 m (\upsilon_2^2 - \upsilon_1^2)}{q_p \ln \frac{r_2}{r_1}} = \frac{3.14 \cdot 8.85 \cdot 10^{-12} 1.67 \cdot 10^{-27} (10^{14} - 10^{12})}{1.6 \cdot 10^{-19} \ln 5} = 17.8 \cdot 10^{-6} \, \text{Kp/m}$$

Ответ: τ=17,8 мкКл/м

5. Электрическое поле создано двумя одинаковыми положительными точечными зарядами q. Найти работу сил поля при перемещении заряда q_0 =10 нКл из точки 1 с потенциалом ϕ_1 =300 В в точку 2.


Дано:

$q=q_1=q_2$	
$q_0=10$ нКл= $10\cdot 10^{-9}$ Кл	
$\phi_1 = 300 \text{ B}$	

Найти:

A - ?

Потенциал поля, создаваемого зарядами q_1 и q_2 в точке 1, равен алгебраической сумме потенциалов полей, создаваемых каждым зарядом в точке 1 в отдельности:

$$\varphi_1 = \varphi_{11} + \varphi_{12} = \frac{kq_1}{a} + \frac{kq_2}{a} = \frac{kq}{a} + \frac{kq}{a} = \frac{2kq}{a}$$

Потенциал поля, создаваемого зарядами q_1 и q_2 в точке 2, равен алгебраической сумме потенциалов полей, создаваемых каждым зарядом в точке 2 в отдельности:

$$\varphi_2 = \varphi_{21} + \varphi_{22} = \frac{kq_1}{3a} + \frac{kq_2}{a} = \frac{kq}{3a} + \frac{kq}{a} = \frac{4kq}{3a} = \frac{2}{3}\varphi_1$$

Работа, совершаемая силами электростатического поля при перемещении заряда q₀ из точки 1 в точку 2 равна:

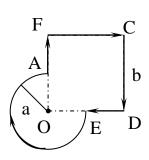
$$A = q_0(\varphi_1 - \varphi_2) = q_0(\varphi_1 - \frac{2}{3}\varphi_1) = \frac{q_0\varphi_1}{3}$$

$$A = \frac{10 \cdot 10^{-9} \cdot 300}{3} = 10^{-6}$$
Дж=1 мкДж

Ответ: А=1 мкДж

6. Найдите индукцию магнитного поля в точке О контура, который показан на рисунке. По контуру течет ток I=5 A. Размеры контура a=120 мм, b=240 мм.

Дано:


I=5 A

a=120 MM

b = 240 MM

Найти:

B - ?

Решение:

В соответствии с принципом суперпозиции полей индукция результирующего поля в точке О равна векторной сумме индукций полей, создаваемых каждым проводником в отдельности:

$$\vec{B} = \vec{B}_1 + \vec{B}_2 + \vec{B}_3 + \vec{B}_4 + \vec{B}_5 ,$$

где \vec{B}_1 - индукция поля, создаваемого частью кругового витка с током; \vec{B}_2 - индукция магнитного поля, создаваемого проводником AF с током; \vec{B}_3 - индукция магнитного поля, создаваемого проводником FC с током; \vec{B}_4 - индукция магнитного поля, создаваемого проводником CD с током; \vec{B}_5 - индукция магнитного поля, создаваемого проводником DE с током. Согласно правилу правого винта все эти вектора направлены в точке O от нас. Следовательно,

$$B = B_1 + B_2 + B_3 + B_4 + B_5$$

где
$$B_1 = \frac{3}{4} \frac{\mu \mu_0 I}{2a}$$

 $B_2 = 0$, т.к. расстояние до оси проводника равно нулю.

$$B_3 = \frac{\mu\mu_0 I}{4\pi r} (\cos\alpha_1 - \cos\alpha_2)$$

Угол α_1 =90° — это угол между направлением тока вдоль проводника FC и радиус — вектором, проведенным из точки F в точку O, угол α_2 =135° - это угол между направлением тока вдоль проводника FC и радиус — вектором, проведенным из точки C в точку O. r = a + 0.5b - расстояние от точки O до оси проводника FC.

$$B_{3} = \frac{\mu\mu_{0}I}{4\pi r}(\cos 90^{\circ} - \cos 135^{\circ}) = \frac{\mu\mu_{0}I}{4\pi(a+0.5b)}(0 - (-\frac{\sqrt{2}}{2})) =$$

$$= \frac{\mu\mu_{0}I}{4\pi(a+0.5b)} \frac{\sqrt{2}}{2}$$

$$B_{4} = \frac{\mu\mu_{0}I}{4\pi r}(\cos \beta_{1} - \cos \beta_{2})$$

Угол β_1 =45° — это угол между направлением тока вдоль проводника CD и радиус — вектором, проведенным из точки C в точку O, угол β_2 =90° - это угол между направлением тока вдоль проводника CD и радиус — вектором, проведенным из точки D в точку O. r = a + 0.5b - расстояние от точки O до оси проводника CD.

$$B_4 = \frac{\mu \mu_0 I}{4\pi r} (\cos 45^\circ - \cos 90^\circ) = \frac{\mu \mu_0 I}{4\pi (a+0.5b)} (\frac{\sqrt{2}}{2} - 0) =$$

$$= \frac{\mu \mu_0 I}{4\pi (a+0.5b)} \frac{\sqrt{2}}{2}$$

B₅=0, т.к. расстояние до оси проводника равно нулю. Следовательно, индукция результирующего поля в точке О равна:

$$B = \frac{3}{4} \frac{\mu \mu_0 I}{2a} + \frac{\mu \mu_0 I}{4\pi (a + 0.5b)} \frac{\sqrt{2}}{2} \cdot 2 = \frac{\mu \mu_0 I}{4\pi} (\frac{3\pi}{2a} + \frac{\sqrt{2}}{b})$$

Подставим данные и после вычисления найдем

$$B = \frac{4\pi \cdot 10^{-7} \cdot 5}{4\pi} \left(\frac{3 \cdot \pi}{2 \cdot 0.12} + \frac{1,41}{0,24} \right) = 22,6 \cdot 10^{-6} \,\text{Тл} = 22,6 \,\text{мкТл}$$

Ответ: B=22,6 мкТл

7. α — частица, ускоренная разностью потенциалов U=1 MB влетает в однородное магнитное поле напряженностью H=1,2 кA/м. Найти: 1) силу, действующую на частицу, радиус окружности, по которой она движется и период ее обращения, если скорость частицы направлена перпендикулярно к направлению магнитного поля; 2) радиус R и шаг h винтовой траектории, если частица влетает в однородное магнитное поле под углом α = 30° к направлению поля.

Дано:

 $q=q_{\alpha}=3,2\cdot 10^{-19}~{\rm K}_{\rm Л}$ $m=m_{\alpha}=6,68\cdot 10^{-27}~{\rm K}_{\rm \Gamma}$ $U=10^6~{\rm B}$ $H=1,2\cdot 10^3~{\rm A/m}$ $\alpha=30^\circ$

Найти:

- 1) F-?; R-?; T-?;
- 2) R-?; h-?

Решение:

1) На движущуюся α - частицу в магнитном поле действует сила Лоренца: $F = q \upsilon B \sin \alpha$ (1) Вектор силы Лоренца перпендикулярен вектору скорости и, следовательно, по второму закону Ньютона сообщает α - частице нормальное ускорение $a_n = \frac{\upsilon^2}{R}$: $F = ma_n$

Подставив сюда выражения F и а_n, получим

$$\frac{mv^2}{R} = qvB\sin\alpha\,, (2)$$

где q, v, m — заряд, скорость и масса α - частицы; B — индукция магнитного поля; R — радиус кривизны траектории; α - угол между напрвлениями вектора скорости и индукции (в первом случае $\vec{v} \perp \vec{B}$ и α =90°, \sin 90°=1) Из формулы (2) найдем

$$R = \frac{m\upsilon}{qB} \ , \tag{3}$$

где $B = \mu \mu_0 H$, а скорость υ найдем из выражения $qU = \frac{m \upsilon^2}{2}$: $\upsilon = \sqrt{\frac{2qU}{m}}$ (4)

Тогда выражение (3) для радиуса кривизны приобретает вид

$$R = \frac{m}{q\mu\mu_0 H} \sqrt{\frac{2qU}{m}} \tag{5}$$

После вычисления найдем

$$R = \frac{6,68 \cdot 10^{-27}}{3,2 \cdot 10^{-19} \cdot 4\pi \cdot 10^{-7} \cdot 1,2 \cdot 10^{3}} \sqrt{\frac{2 \cdot 3,2 \cdot 10^{-19} \cdot 10^{6}}{6,68 \cdot 10^{-27}}} = 137 \textit{м}.$$
 С учетом выражений (1) и (4) получим
$$F = q \upsilon B = q \sqrt{\frac{2qU}{m} \cdot \mu \mu_{0} H}$$

После вычисления получим

$$F = 3.2 \cdot 10^{-19} \cdot \sqrt{\frac{2 \cdot 3.2 \cdot 10^{-19} \cdot 10^{6}}{6.68 \cdot 10^{-27}}} \cdot 4\pi \cdot 10^{-7} \cdot 1.2 \cdot 10^{3} = 4.7 \cdot 10^{-15} H$$

Для определения периода воспользуемся формулой

$$T = \frac{2\pi R}{\nu}$$

С учетом выражения (5) получим

$$T = \frac{2\pi \cdot m}{q \cdot \mu \mu_0 H}$$

Произведя вычисления, найдем

$$T = \frac{6.28 \cdot 6.68 \cdot 10^{-27}}{3.2 \cdot 10^{-19} \cdot 4\pi \cdot 10^{-7} \cdot 1.2 \cdot 10^{3}} = 87 \cdot 10^{-6} c == 87 \text{MKC}$$

2) Во втором случае α - частица влетает в однородное магнитное поле под углом α =30° к направлению линий индукции. По второму закону Ньютона: F=ma_n ,

где F=qv_LB и
$$a_n = \frac{v_\perp^2}{R}$$
.

Тогда $\frac{m\upsilon_{\perp}^2}{R} = q\upsilon_{\perp}B$, откуда находим радиус винтовой ли-

нии:
$$R = \frac{m\upsilon_{\perp}}{qB} = \frac{m\upsilon\sin\alpha}{qB}$$
, (6) где $B = \mu\mu_0 H$ и $\upsilon = \sqrt{\frac{2qU}{m}}$

Следовательно,
$$R = \frac{m}{q\mu\mu_0 H} \sqrt{\frac{2qU}{m}} \sin \alpha$$

Произведя вычисления, получим

$$R = \frac{6,68 \cdot 10^{-27}}{3,2 \cdot 10^{-19} \cdot 4\pi \cdot 10^{-7} \cdot 1,2 \cdot 10^{3}} \sqrt{\frac{2 \cdot 3,2 \cdot 10^{-19} \cdot 10^{6}}{6,68 \cdot 10^{-27}}} \cdot 0,5 = 380 \text{m}$$

Шаг винтовой линии равен пути, пройденному α - частицей вдоль поля со скоростью $\upsilon_{\parallel} = \upsilon \cdot \cos \alpha$ за время, которое понадобится α - частице для того, чтобы совершить один

оборот: h=
$$\upsilon_{\parallel}$$
·T, где $T=\frac{2\pi R}{\upsilon_{\perp}}$ - период обращения электро-

на. С учетом (6) получим $T = 2\pi \frac{m}{qB}$, где $B = \mu \mu_0 H$.

Следовательно,
$$h = \frac{2\pi m}{q\mu\mu_0 H} \sqrt{\frac{2qU}{m}} \cos\alpha$$

Произведя вычисления, получим

$$h = \frac{2 \cdot 3,14 \cdot 6,68 \cdot 10^{-27}}{3,2 \cdot 10^{-19} \cdot 4 \cdot 3,14 \cdot 10^{-7} \cdot 1,2 \cdot 10^{3}} \sqrt{\frac{2 \cdot 3,2 \cdot 10^{-19} \cdot 10^{6}}{6,68 \cdot 10^{-27}}} 0,866 = 734 \text{ M}$$

8. В однородном магнитном поле с индукцией B=0,35 Тл расположена рамка сопротивлением R=1 кОм, содержащая 1500 витков площадью S=50 см². 1) Найти какое количество электричества протечет по рамке за время поворота ее на угол α =90° от α 1=0° до α 2=90°. 2) Найти максимальную ЭДС индукции ε _{мах}, возникшую в рамке, если она вращается с частотой 480 мин⁻¹, и её ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции поля.

Дано:

B=0,35 Tπ R=1000 Om N=1500 S=50 cm²=0,005 m² α_1 =0° α_2 =90° n=8 oб/c

Найти:

q - ?
$$\varepsilon_{max}$$
 - ?

Решение:

Мгновенное значение ЭДС индукции ε_i определяется основным уравнением электромагнитной индукции Фарадея – Максвелла:

$$\varepsilon_i = -\frac{d\psi}{dt} \tag{1}$$

Потокосцепление ψ =N Φ , где N — число витков, пронизываемых магнитным потоком Φ . Подставив выражение ψ в формулу (1), получим

$$\varepsilon_i = -N \frac{d\Phi}{dt} \tag{2}$$

Индукционный ток, с одной стороны, $I = \frac{\mathcal{E}_i}{R}$, а, с другой

стороны,
$$I = \frac{dq}{dt}$$
.

Тогда $dq = -N \frac{d\Phi}{R}$, где $\Phi = BS\cos\alpha$ - магнитный поток,

пронизывающий рамку.

После интегрирования получаем

$$q = -\frac{NB\cos\alpha_2 - NB\cos\alpha_1}{R}$$

После вычисления получаем

$$q = \frac{-0 + 1500 \cdot 0.35 \cdot 50 \cdot 10^{-4}}{10^3} = 2.6 \text{ мКл}$$

2) При вращении рамки магнитный поток Ф, пронизывающий рамку в момент времени t, изменяется по закону Φ=BScosωt, где В – магнитная индукция, S – площадь рамки, ω - круговая частота. Подставив в формулу (2) выражение для Ф и продифференцировав по времени, найдем мгновенное значение ЭДС индукции:

$$\varepsilon = -\frac{d}{dt} (N \cdot B \cdot S \cos \omega t) = NBS\omega \sin \omega t \tag{3}$$

Круговая частота о связана с частотой п вращения соотнощением $\omega = 2\pi n$. Подставив выражение ω в формулу (3), получим $\varepsilon = NBS \cdot 2\pi n \sin \omega t$, где $\varepsilon_{\max} = NBS \cdot 2\pi n$

Произведя вычисления получим

$$\varepsilon_{\text{max}} = 1500 \cdot 0.35 \cdot 50 \cdot 10^{-4} \cdot 6.28 \cdot 8 = 132 \, B$$

Ответ: 1) q=2,6 мКл; 2) ε_{max} =132 В

9. Ток в колебательном контуре зависит от времени по закону $I = I_m \sin(\omega_0 t)$, где I_m =9 мА, ω_0 =4,5·10⁴ с⁻¹. Емкость конденсатора с=0,5 мкФ. Найти: 1) период колебаний; 2) индуктивность контура; 3) максимальную энергию электрического поля; 4) закон изменения со временем напряжения на конденсаторе; 5) напряжение на конденсаторе в момент времени t=0.

Дано:

$$I = I_m \sin \omega_0 t$$

 $I_{\text{max}} = 9 \text{ MA} = 9 \cdot 10^{-3} \text{ A}$
 $\omega_0 = 4,5 \cdot 10^4 \text{ c}^{-1}$
 $c = 0,5 \text{ MK} \Phi =$
 $= 0,5 \cdot 10^{-6} \Phi$

T-?; L-?;
$$W_{\text{max}}^{\text{on}}$$
 -? $U(t)$ -?; $U(0)$ -?

Решение:

Циклическая частота колебаний, которые устанавливаются в контуре, определяется формулой: $\omega_0 = \frac{1}{\sqrt{LC}}$

Отсюда выражаем индуктивность контура L: $L = \frac{1}{\omega^2 C}$

После вычисления получаем

Найти:
T-?; L-?;
$$W_{\text{max}}^{\mathfrak{I}}$$
-?; $L = \frac{1}{(4.5 \cdot 10^4)^2 \cdot 0.5 \cdot 10^{-6}} = 0.0988 \cdot 10^{-2} \Gamma_{\text{H}} \approx 1 \text{ м}\Gamma_{\text{H}}$

Период колебаний связан с циклической частотой: $T = \frac{2\pi}{2\pi}$

После вычисления получаем

$$T = \frac{2 \cdot 3.14}{4.5 \cdot 10^4} = 1.4 \cdot 10^{-4} \,\mathrm{c} \approx 140 \,\mathrm{mkc}$$

Так как в процессе незатухающих электромагнитных колебаний выполняется закон сохранения энергии,

$$W_{\max}^{\scriptscriptstyle \mathfrak{I},n}=W_{\max}^{\scriptscriptstyle MAZH}$$
 и, следовательно, $W_{\max}^{\scriptscriptstyle \mathfrak{I},n}=rac{LI_{m}^{\scriptscriptstyle 2}}{2}$

После вычисления получаем

$$W_{\text{max}}^{\text{\tiny 9.7}} = \frac{10^{-3} \cdot 81 \cdot 10^{-6}}{2} = 40,5 \cdot 10^{-9}$$
Дж

Чтобы найти напряжение на конденсаторе $U_c = \frac{q}{C}$, найдем

выражение для заряда конденсатора как функцию времени. Для этого возьмем интеграл от силы тока по времени

$$q = \int I dt = \int I_m \sin \omega_0 t dt = \frac{I_m}{\omega_0} \int \sin \omega_0 t d(\omega_0 t) = \frac{-I_m}{\omega_0} \cos(\omega_0 t) =$$

$$= \frac{I_m}{\omega_0} \cos(\omega_0 t + \pi)$$

Тогда закон изменения со временем напряжения на конденсаторе имеет вид: $U(t) = U_C = \frac{I_m}{\omega C} \cos(\omega_0 t + \pi)$

Напряжение на конденсаторе в момент времени t=0 будет

равно
$$U_c(0) = \frac{9 \cdot 10^{-3}}{4.5 \cdot 10^4 \cdot 0.5 \cdot 10^{-6}} \cos \pi = -0.4 \,\mathrm{B}$$

Ответ: 1) T=140 мкс; 2) L=1 мГн; 3)
$$W_{\text{max}}^{\mathfrak{I}_{n}} = 40,5 \cdot 10^{-9} \text{Дж};$$
 4) $U(t) = \frac{I_{m}}{\omega_{0}C} \cos(\omega_{0}t + \pi);$ 5) U(0)=-0,4 B

10. Плоская электромагнитная волна $E = 100 \cdot \sin(6,28 \cdot 10^8 t + 6,28x)$ В/м распространяется в веществе (ε =9). Определить 1) период и частоту колебаний; 2) длину волны и скорость её распространения; 3) магнитную проницаемость среды; 4) амплитуду напряженности магнитного поля и интенсивность волны, то есть среднюю энергию, проходящую через единицу поверхности за единицу времени.

Дано:

$$E = 100 \sin(6,28 \cdot 10^8 t + 6,28x)$$
 B/м ε=9

Найти:

T-?;
$$\nu$$
 - ?; λ -?; ν -?; μ -?; H_m -?; I-?

Решение:

Уравнение плоской электромагнитной волны: $E = E_m \sin(\omega t - kx)$, (1)

где E_{m} - амплитуда колебаний вектора напряженности электрического поля;

$$\omega = 2\pi v = \frac{2\pi}{T}$$
 - циклическая частота; t - вре-

мя;
$$k = \frac{2\pi}{\lambda}$$
 - волновой вектор; х - координата

Сравнивая (1) с уравнением, заданным в задаче, получаем:

$$T = \frac{2\pi}{\omega} = \frac{6.28}{6.28 \cdot 10^8} = 10^{-8} \,\mathrm{c}$$

$$v = \frac{\omega}{2\pi} = \frac{6.28 \cdot 10^8}{6.28} = 10^8 \, \Gamma \text{u}$$

$$\lambda = \frac{2\pi}{k} = \frac{6.28}{6.28} = 1$$
 M

Длина волны, период и скорость волны связаны соотношением $\upsilon = \frac{\lambda}{T}$, тогда $\upsilon = \frac{1}{10^{-8}} = 10^8$ м/с.

Фазовая скорость распространения электромагнитной волны связана с характеристиками среды є и µ соотношением:

$$\upsilon = \frac{c}{\sqrt{\varepsilon\mu}},\tag{2}$$

где $\,\epsilon$ - электрическая постоянная, μ - магнитная постоянная, c - скорость света в вакууме.

Из (2) получаем
$$\mu = \frac{c^2}{\varepsilon v^2} = \frac{(3 \cdot 10^8)^2}{9 \cdot 1 \cdot (10^8)^2} = 1$$

Связь между мгновенными значениями напряженностей электрического E и магнитного H полей электромагнитной волны: $\sqrt{\varepsilon \varepsilon_0} E = \sqrt{\mu \mu_0} H$

Тогда для амплитуд напряженностей электрического и магнитного полей волны можно записать:

$$\sqrt{\varepsilon\varepsilon_0}E_{\scriptscriptstyle m}=\sqrt{\mu\mu_0}H_{\scriptscriptstyle m}$$

Тогда искомая амплитуда напряженности магнитного поля

волны:
$$H_{\scriptscriptstyle m} = \frac{\sqrt{\mathcal{E}\mathcal{E}_{\scriptscriptstyle 0}}}{\sqrt{\mu\mu_{\scriptscriptstyle 0}}} E_{\scriptscriptstyle m}$$

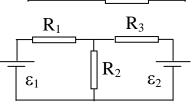
После вычисления получим

$$H_{m} = \frac{\sqrt{9 \cdot 8,85 \cdot 10^{-12}}}{\sqrt{1 \cdot 4 \cdot 3,14 \cdot 10^{-7}}} \cdot 100 = 0,8 \,\text{A/m}$$

Интенсивность электромагнитной волны определяется как средняя энергия, проходящая через единицу поверхности за единицу времени, $I=\langle S \rangle$, где S- модуль вектора плотности потока электромагнитной энергии — модуль вектора Умова — Пойнтинга. Мгновенное значение модуля вектора Умова — Пойнтинга $S=E_mH_m\cos^2(\omega t-kx)$, а его среднее

значение
$$\langle S \rangle = \frac{1}{2} E_{\scriptscriptstyle m} H_{\scriptscriptstyle m}$$

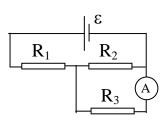
После вычисления получим: $I=\langle S \rangle = \frac{1}{2} \cdot 100 \cdot 0.8 = 40 \,\mathrm{Br/m^2}$


Οτβετ:
$$T=10^{-8}$$
 c; $v=10^{8}$ Γιι; $\lambda=1$ m; $\upsilon=10^{8}$ m/c; $\mu=1$; $H_m=0.8$ A/m; $I=40$ BT/m²

Контрольная работа № 1

- 1. На металлической сфере радиусом R=10 см находится заряд q=1 нКл. Определить напряженность E электрического поля: 1) на расстоянии $r_1=8$ см от центра сферы; 2) на поверхности сферы; 3) на расстоянии $r_2=15$ см от центра сферы. Построить график зависимости E(r).
- 2. Шарик массой 1 г, несущий заряд 9.8 нКл, подвешен в воздухе на тонкой шелковой нити. При приближении к нему заряда q_2 противоположного знака на расстояние 4 см нить отклонилась от вертикального направления на угол α =45°. Определить величину заряда q_2 .
- 3. Два металлических шара малых размеров с зарядами $q_1=8\cdot10^{-7}$ Кл и $q_2=1,2\cdot10^{-6}$ Кл приведены в соприкосновение и затем удалены друг от друга так, что расстояние между центрами составляет 40 см. Найти силу их взаимодействия в воздухе.
- 4. С какой силой на единицу длины отталкиваются две одноименно заряженные бесконечно длинные нити с одинаковой линейной плотностью заряда т=3 мкКл/м, находящихся на расстоянии 2 см друг от друга?
- 5. Расстояние между зарядами q_1 =2 нКл и q_2 =-2 нКл равно 20 см. Определить напряженность и потенциал поля, созданного этими зарядами в точке, находящейся на расстоянии r_1 =15 см от первого заряда и r_2 =10 см от второго заряда.
- 6. Точечный заряд q=1 мкКл находится вблизи большой равномерно заряженной пластины против ее середины. Вычислить поверхностную плотность заряда пластины, если на точечный заряд действует сила F=60 мН.
- 7. Два заряда по 0,2 мкКл каждый расположены на горизонтали на расстоянии 40 см друг от друга. Найти напряженность и потенциал поля в точке, удаленной на 25 см от каждого из зарядов.
- 8. В вершинах правильного треугольника со стороной 30 см расположены заряды +100 нКл, -80 нКл и +100 нКл. Найти величину и направление силы, действующей на заряд –40 нКл, находящийся в центре тяжести треугольника.
- 9. Три одинаковых заряда величиной 6,67 нКл каждый помещены в вершинах равностороннего треугольника. Сила, действующая на каждый заряд F=0,01H. Определить длину стороны треугольника.
- 10.В вершинах квадрата со стороной 10 см расположены три отрицательных и один положительный заряд величиной 70 нКл каждый. Определить напряженность и потенциал поля в центре квадрата, находящегося в воздухе.
- 11. Какая совершается работа при перенесении точечного заряда q=2 нКл из бесконечности в точку, находящуюся на расстоянии r=1 см от поверхности шара радиусом R=1 см с поверхностной плотностью заряда $\sigma=10$ нКл/см 2 .
- 12.На расстоянии r_1 =4 см от бесконечно длинной заряженной нити находится точечный заряд q=0,67 нКл. Под действием поля заряд переместился на расстоние r_2 =2 см, при этом была совершена работа A=5 мкДж. Найти линейную плотность заряда нити.

- 13.Заряд —1 нКл переместился в поле заряда +3 нКл из точки с потенциалом 200 В в точку с потенциалом 1200 В. Определить работу сил поля и расстояние между этими точками.
- 14. Определить потенциал точки поля, находящейся на расстоянии 5 см от центра заряженного шара, если напряженность поля в этой точке 300 кВ/м. Определить величину заряда.
- 15. На расстоянии 4 м от сферы, заряд которой 10 мкКл, а радиус 10 см, расположен точечный заряд. При перемещении этого заряда на поверхность сферы совершена работа A=10 мДж. Определить величину точечного заряда.
- 16. Шарик массой 1 г и зарядом 10 нКл перемещается из точки А, потенциал которой равен 600 В, в точку В, потенциал которой равен нулю. Чему была равна его скорость в точке А, если в точке В она была равной 20 см/с?
- 17. Две одноименно заряженные бесконечно длинные нити с одинаковой линейной плотностью заряда τ =3 мкКл/м находятся на расстоянии r_1 =2 см друг от друга. Какую работу на единицу длины надо совершить, чтобы сдвинуть эти нити до расстояния r_2 =1 см?
- 18.Полый шар несет на себе равномерно распределенный заряд. Определить радиус шара, если потенциал в центре шара равен ϕ_1 =200 B, а в точке, лежащей от его центра на расстоянии r=50 см, равен ϕ_2 =40 B.
- 19. Металлический шар радиусом 5 см несет заряд 10 нКл. Определить потенциал электрического поля: 1) на поверхности шара; 2) на расстоянии r=2 см от его поверхности. Построить график зависимости ф от r.
- 20.На расстоянии r_1 =0,9 м от поверхности шара радиусом R=10 см, несущего заряд с поверхностной плотностью σ =30 мкКл/м², находится точечный заряд q=7 нКл. Определить работу, которую необходимо произвести, чтобы перенести заряд q в точку, расположенную на расстоянии r_2 =50 см от центра шара.
- 21.Электрон влетает в плоский конденсатор параллельно пластинам, поле в котором E=60 В/см. Найти изменение скорости электрона в момент вылета его из конденсатора, если начальная скорость $\upsilon_0=2\cdot 10^9$ см/с, а длина пластины конденсатора 6 см.
- 22. Разность потенциалов между обкладками плоского конденсатора 2 кВ, зазор 2 см, заряд на каждой обкладке 1 нКл. Определить силу притяжения обкладок и энергию конденсатора.
- 23. Электрон с некоторой начальной скоростью υ_0 влетает в плоский конденсатор параллельно пластинам на равном расстоянии отних. К пластинам конденсатора приложена разность потенциалов U=300 В. Расстояние между пластинами d=2 см, длина конденсатора l=10 см. Какова должна быть предельная начальная скорость электрона, чтобы он не вылетел из конденсатора?
- 24. Конденсатор емкостью C_1 =20 мк Φ , заряженный до разности потенциалов U_1 =100 B, соединили параллельно с заряженным до разности потенциалов U_2 =40 B конденсатором, емкость которого неизвестна. Определить емкость второго конденсатора, если разность потенциалов после соединения оказа-


- лась равной U=80 В. (Соединяются обкладки, имеющие одноименный заряд)
- 25.Плоский воздушный конденсатор с площадью пластин S=100 см² и зазором d=5 мм заряжен до разности потенциалов U=900 В. Не отключая от источника напряжения пластины конденсатора раздвигают до расстояния 1 см. Определить напряженность поля в конденсаторе, энергию конденсатора до и после раздвижения.
- 26.Плоский воздушный конденсатор заряжен до разности потенциалов 300 В. Площадь пластин конденсатора 100 см², напряженность поля в зазоре между ними 60 кВ/м. Определить поверхностную плотность заряда на пластинах и энергию конденсатора.
- 27. Два плоских воздушных конденсатора одинаковой емкости соединены параллельно и заряжены до разности потенциалов 300 В. Определить разность потенциалов этой системы, если пространство между пластинами одного из конденсаторов заполнено слюдой (см. таблицу).
- 28.Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость υ=1 Мм/с. Расстояние между пластинами d=5,3 мм. Найти: 1) разность потенциалов между пластинами; 2) поверхностную плотность заряда на пластинах.
- 29. Разность потенциалов между пластинами плоского конденсатора U=100 В. Площадь каждой пластины S=200 см², расстояние между пластинами d=0,5 мм, пространство между пластинами заполнено парафином (см. табл.). Определить силу притяжения пластин друг к другу.
- 30.Один конденсатор заряжен до разности потенциалов 60 В, другой до 20 В. Конденсаторы соединили параллельно одноименно заряженными пластинами, и разность потенциалов оказалась равной 50 В. Определить отношение емкостей этих конденсаторов.
- 31.По алюминиевому проводу сечением S=0,2 мм² течет ток I=0,2 А. Определить силу, действующую на отдельные свободные электроны со стороны электрического поля.
- 32.К элементу с эдс ε =1,5 В присоединили катушку с сопротивлением R=0,1 Ом. Амперметр показал силу тока равную I_1 =0,5 А. Когда к элементу присоединили последовательно еще один элемент с такой же эдс, то сила тока в той же катушке оказалась I_2 =0,4 А. Определить внутренние сопротивления первого и второго элементов.
- 33.Найти значение и направление тока через сопротивление R в схеме, показанной на рисунке, если J_1 =1,5 B; J_2 =3,7 B; R_1 =10 Ом; R_2 =20 Ом и R=5 Ом. Внутренним сопротивлением источников тока пренебречь.
- 34.Определить силу тока в сопротивлении R_1 (см. рис.) и напряжение на концах этого сопротивления, если ϵ_1 =4 B; ϵ_2 =3 B; R_1 =2 Ом; R_2 =6 Ом и R_3 =1 Ом. Внутренним сопротивлением источников тока пре-

R

небречь.

- 35.К батарее через переменное сопротивление R подключен вольтметр. Если сопротивление уменьшить втрое, то показания вольтметра возрастут вдвое. Во сколько раз изменятся показания вольтметра, если сопротивление R уменьшить до нуля?
- 36. Лампа накаливания потребляет ток, равный 0,6 А. Температура вольфрамовой нити диаметром 0,1 мм равна 2200°С. Ток подводится медным проводом сечением 6 мм². Определить напряженность электрического поля: 1) в вольфраме; 2) в меди. Удельное сопротивление меди и вольфрама смотрите в таблице № 3 приложения.
- 37.Сила тока в проводнике равномерно нарастает от I_0 =0 до I=2 A в течение времени t=5 c. Определить заряд, прошедший в проводнике.
- 38.Напряжение на зажимах элемента в замкнутой цепи (см. рис.) U=2,1 B, сопротивления R_1 =5 Oм, R_2 =6 Ом и R_3 =3 Ом. Какой ток показывает амперметр?
- 39.Определить заряд, прошедший по проводу с сопротивлением R=3 Ом при равномерном нарастании напряжения на концах провода от $U_1=2$ В до $U_2=7$ В в течение времени t=20 с.

- 40.Определить разность потенциалов на концах нихромового проводника длиной 1 м, если плотность тока, текущего по нему $j=2\cdot10^8$ A/м².
- 41.Ток в проводнике сопротивлением R=15 Ом равномерно нарастает от $I_0=0$ до некоторого максимума в течение времени t=5 с. За это время в проводнике выделилось количество теплоты Q=10 кДж. Найти среднее значение силы тока в проводнике за этот промежуток времени.
- 42.Определить напряженность электрического поля в алюминиевом проводнике объемом $V=10 \text{ см}^3$, если при прохождении по нему постоянного тока за время t=5 мин выделилось количество теплоты Q=2,3 кДж.
- 43.Плотность тока в медном проводе равна 10 А/см. Определить удельную тепловую мощность тока. Удельное сопротивление меди смотрите в таблице № 3 приложения.
- 44. Ток в проводнике сопротивлением R=100 Ом равномерно нарастает от $I_0=0$ до $I_{max}=10$ А в течение времени t=30 с. Чему равно количество теплоты, выделяющееся за это время в проводнике?
- 45.Определить работу тока на участке, не содержащем источника эдс и имеющем сопротивление R=12 Ом, если ток в течение t=5 с равномерно увеличивается от $I_1=2$ A до $I_2=10$ A.
- 46. При силе тока 3 A во внешней цепи батареи выделяется мощность 18 Bт, а при силе тока 1 A мощность 10 Вт. Определить эдс батареи.
- 47.К батарее из трех одинаковых параллельно соединенных источников тока подключают один раз резистор сопротивлением 1 Ом, другой раз резистор сопротивлением 4 Ом. В обоих случаях на резисторах за одно и то же время выделяется одинаковое количество теплоты. Определить внутреннее сопротивление источника тока.

- 48.По проводнику сопротивлением 10 Ом течет медленно изменяющийся по синусоидальному закону ток $I = 2\sin(\frac{\pi}{4}t)$ А. Определить количество теплоты, выделевшееся в проводнике в первые 4 с.
- 49. Чему равен КПД элемента, если известно, что при увеличении внешнего сопротивления, на которое он замкнут, в 2 раза разность потенциалов увеличивается на 10 %.
- 50.Сколько тепла выделится в спирали с сопротивлением R=75 Ом при прохождении через нее количества электричества q=100 Кл, если ток в спирали равномерно убывает до нуля в течение t=50 с.
- 51.По двум бесконечно длинным проводникам, скрещенным под прямым углом текут токи I_1 =30 A и I_2 =40 A. Расстояние между проводниками a=20 см. Определить магнитную индукцию в точках A и C, одинаково удаленных от обоих проводников на расстояние, равное d.
- 52. По контуру в виде равностороннего треугольника идет ток I=40 А. Сторона треугольника a=20 см. Определить магнитную индукцию в точке пересечения высот.
- 53.По тонкому проволочному кольцу течет ток. Не изменяя силы тока в проводнике, ему придали форму квадрата. Во сколько раз изменилась магнитная индукция в центре контура?
- 54. Ток I=5 A течет по тонкому замкнутому проводнику (см. рис.). Радиус изогнутой части проводника R=12 см, угол 2ϕ =90°. Найти магнитную индукцию в т. О.
- 55.Ток I=30 A идет по длинному проводу, согнутому под углом α =120°. Определить напряженность поля в точке, находящейся на биссектрисе угла на расстоянии 5 см от вершины угла.
- 56. Бесконечно длинный провод образует круговую петлю, касательную к проводу. По проводу идет ток силой 5 А. Найти радиус петли, если известно, что напряженность магнитного поля в центре петли равна 41 А/м.
- 57.По проволочной рамке, имеющей форму правильного шестиугольника, идет ток силой I=2 А. При этом в центре рамки образуется магнитное поле напряженностью H=33 A/м. Найти длину проволоки, из которой сделана рамка.
- 58.По двум бесконечно длинным прямым параллельным проводникам, расстояние между которыми d=20 см, текут токи $I_1=40$ A и $I_2=80$ A в одном направлении. Определить магнитную индукцию поля этих токов в точке, удаленной от первого проводника на расстояние $r_1=12$ см и от второго на $r_2=16$ см.
- 59.По двум бесконечно длинным прямым параллельным проводникам, расстояние между которыми d=15 см, текут токи $I_1=70$ A и $I_2=50$ A в противоположных направлениях. Определить магнитную индукцию в точке, удаленной на $r_1=20$ см от первого и $r_2=30$ см от второго проводника.

- 60. Два круговых витка расположены в двух взаимно перпендикулярных плоскостях так, что центры этих витков совпадают. Радиус каждого витка R=2 см и токи, текущие по виткам $I_1=5$ A и $I_2=10$ A. Найти напряженность магнитного поля в центре этих витков.
- 61. Кинетическая энергия α частицы равна 500 эВ. Частица движется в однородном магнитном поле по окружности радиусом R=80 см. Определить магнитную индукцию поля.
- 62. Электрон, ускоренный разностью потенциалов U=6 кB, влетает в однородное магнитное поле под углом α =30° к направлению поля и движется по винтовой траектории. Индукция магнитного поля B=13 мТл. Найти радиус R и шаг h винтовой траектории.
- 63.α-частица, кинетическая энергия которой W=500 эВ, влетает в однородное магнитное поле, перпендикулярное к направлению ее движения. Индукция магнитного поля B=0,1 Тл. Найти силу, действующую на α-частицу, радиус R окружности, по которой движется α-частица, и период обращения Т α-частицы.
- 64. Протон и электрон, ускоренные одинаковой разностью потенциалов, влетают в однородное магнитное поле. Во сколько раз радиус кривизны траектории протона больше радиуса кривизны траектории электрона?
- 65. Электрон, влетая в однородное магнитное поле с индукцией B=0,1 Тл, движется по окружности. Найти величину эквивалентного кругового тока, создаваемого движением электрона.
- 66.В однородном магнитном поле с индукцией B=2 Тл движется электрон. Траектория его движения представляет собой винтовую линию с радиусом R=10 см и шагом h=60 см. Какова кинетическая энергия электрона?
- 67. Электрон движется в однородном магнитном поле с индукцией B=100 мкТл по винтовой линии. Чему равна скорость электрона, если шаг винтовой линии h=20 см, а радиус R=5 см?
- 68.Момент импульса протона в однородном магнитном поле напряженностью 20~кA/m равен $6,6\cdot10^{-23}~\text{кг}\cdot\text{m}^2/\text{c}$. Найти кинетическую энергию протона, если он движется перпендикулярно линиям магнитной индукции поля.
- 69.Заряженная частица, проходя ускоряющую разность потенциалов U=20 B, двигается в однородном магнитном поле с индукцией B=15,1 мТл по окружности радиусом R=1 см. Чему равно отношение заряда частицы к ее массе q/m и какова скорость υ частицы?
- 70. Частица, несущая элементарный заряд, влетела в однородное магнитное поле с индукцией B=0,5 Тл. Определить момент импульса, которым обладала частица при движении в магнитном поле, если ее траектория представляла дугу окружности радиусом R=0,2 см.
- 71.По проводу согнутому в виде квадрата со стороной a=10 см, течет ток силой I=20 A, величина которого поддерживается неизменной. Плоскость квадрата составляет угол α =20° с линиями индукции однородного магнитного поля (B=0,1 Tл). Вычислить работу, которую необходимо совершить для того, чтобы удалить провод за пределы поля.

- 72.Плоскость проволочного витка площадью S=100 см² и сопротивлением R=5 Ом, находящегося в однородном магнитном поле напряженностью H=10 кA/м, перпендикулярна линиям магнитной индукции. При повороте витка в магнитном поле отсчет гальванометра, замкнутого на виток, составляет q=12,6 мкКл. Определить угол поворота витка.
- 73.В однородном магнитном поле, индукция которого B=0,1 Тл, равномерно вращается катушка, состоящая из N=100 витков проволоки. Частота вращения катушки n=5 c⁻¹; площадь прперечного сечения катушки S=0,01 м². Ось вращения перпендикулярна к оси катушки и направлению магнитного поля. Найти максимальную эдс индукции во вращающейся катушке.
- 74.С какой скоростью должен двигаться проводник длиной 1=10 см перпендикулярно силовым линиям однородного магнитного поля, напряженность которого $H=2/4\pi\cdot 10^6$ А/м, чтобы между концами проводника возникла разность потенциалов U=0,01 В? Направление скорости проводника с направлением самого проводника составляет угол $\alpha=30^\circ$.
- 75. Рамка, имеющая форму равностороннего треугольника, помещена в однородное магнитное поле с напряженностью H=64 кA/м. Нормаль к рамке составляет с направлением магнитного поля угол $\alpha=30^{\circ}$. Определить длину стороны рамки a, если известно, что среднее значение эдс индукции, возникающей в рамке при выключении поля в течение времени $\Delta t=0,03$ с, равно $<\epsilon>=10$ мВ.
- 76. Короткая катушка, содержащая N=1000 витков, равномерно вращается с угловой скоростью ω=5 рад/с относительно оси, совпадающей с диаметром катушки и перпендикулярной линиям поля. Магнитное поле однородное с индукцией B=0,04 Тл. Определить мгновенное значение эдс индукции для тех моментов времени, когда плоскость катушки составляет угол α=60° с линиями поля. Площадь сечения катушки S=100 см².
- 77. Рамка из провода сопротивлением R=0,01 Ом равномерно вращается в однородном магнитном поле с индукцией B=0,05 Тл. Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Площадь рамки S=100 см². Определить какое количество электричества протечет через рамку при повороте ее на угол от 30° до 60°.
- 78.Кольцо из проволоки сопротивлением R=1 мОм находится в однородном магнитном поле (B=0,4 Тл). Плоскость кольца составляет угол $\alpha=30^{\circ}$ с линиями индукции. Определить заряд, который протечет по кольцу, если его выдернуть из поля. Площадь кольца S=10 см².
- 79.Квадратная рамка со стороной а=20 см расположена в магнитном поле так, что нормаль к рамке образует угол α =60° с направлением поля. Магнитное поле изменяется с течением времени по закону $B = B_0 \cos \omega t$, где B_0 =0,2 Тл и ω =314 мин⁻¹. Определить эдс индукции в рамке в момент времени t=4 с.
- 80.Проволочное кольцо радиусом r=10 см лежит на столе. Какое количество электричества q протечет по кольцу, если его повернуть с одной стороны на

- другую? Сопротивление кольца R=1 Ом. Вертикальная составляющая магнитного поля Земли B=50 мкТл .
- 81. Уравнение изменения со временем разности потенциалов на обкладках конденсатора в колебательном контуре имеет вид $U = 50\cos 10^4 \pi t$ В. Емкость конденсатора C=0,1 мкФ. Найти период колебаний, индуктивность контура, закон изменения со временем тока в цепи.
- 82. Уравнение изменения со временем тока в колебательном контуре имеет вид $I = -0.02 \sin 400\pi t$ А. Индуктивность контура L=1 Гн. Найти период колебаний, емкость контура, максимальную энергию электрического поля и максимальную энергию магнитного поля.
- 83.Колебательный контур состоит из конденсатора емкостью C=5 мк Φ и катушки индуктивностью L=200 мГн. Определить максимальную силу тока в контуре, если максимальная разность потенциалов на обкладках конденсатора $U_{max}=90$ В. Активным сопротивлением контура пренебречь.
- 84. Колебательный контур состоит из конденсатора емкостью $C=100 \text{ н}\Phi$ и катушки индуктивностью $L=100 \text{ м}\Gamma$ н. Сколько времени проходит от момента, когда конденсатор полностью разряжен, до момента, когда его энергия вдвое превышает энергию катушки? Активным сопротивлением контура пренебречь.
- 85.Колебательный контур содержит катушку с общим числом витков N=100 индуктивностью L=10 мкГн и конденсатор емкостью C=1 нФ. Максимальное напряжение на обкладках конденсатора составляет 100 В. Определить максимальный магнитный поток, пронизывающий катушку.
- 86.Колебательный контур состоит из конденсатора емкостью C=25 нФ и катушки индуктивностью L=1,015 Гн. Обкладки конденсатора имеют заряд q=2,5 мкКл. Написать уравнение изменения разности потенциалов U на обкладках конденсатора и силы тока I в цепи. Найти U и I в момент времени t=T/4.
- 87. Через 0,25 мкс после выключения колебательного контура энергия магнитного поля катушки стала равна энергии электрического поля конденсатора. Определить частоту колебаний, возникающих в контуре, если ток в катушке индуктивности изменяется по закону $I = I_0 \sin \omega t$.
- 88.Собственная частота колебательного контура с пренебрежимо малым активным сопротивлением ν_0 =1 МГц. Определить индуктивность L контура , если его емкость C=8 пФ.
- 89.Найти промежуток времени τ , за который амплитуда колебаний силы тока в контуре с добротностью Q=5000 уменьшается в 2 раза, если частота свободных колебаний в контуре ν =2,2 МГц.
- 90. Колебательный контур состоит из катушки индуктивностью 2,5 мГн и воздушного конденсатора емкостью 10 пФ. Во сколько раз изменится частота и период колебаний, если зазор между обкладками конденсатора заполнить слюдой?

- 91. Катушка с индуктивностью L=30 мкГн присоединена к плоскому конденсатору с площадью пластин S=0,01 м 2 и расстоянием между ними d=0,1 мм. Найти диэлектрическую проницаемость среды, заполняющей пространство между пластинами, если контур настроен на длину волны λ =750 м.
- 92. Электромагнитная волна с частотой v=5 МГц переходит из немагнитной среды с диэлектрической проницаемостью $\varepsilon=2$ в вакуум. Определить приращение ее длины волны.
- 93.В вакууме вдоль оси X распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля волны составляет 50 мВ/м. Определить интенсивность волны I, т.е. среднюю энергию, проходящую через единицу поверхности в единицу времени.
- 94.В вакууме вдоль оси X распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля волны составляет 10 В/м. Определить амплитуду напряженности магнитного поля волны.
- 95. Уравнение плоской электромагнитной волны, распространяющейся в среде с μ =1, имеет вид $E = 10\sin(2\pi \cdot 10^8 t 4{,}19x)$. Определить диэлектрическую проницаемость среды, длину волны и скорость ее распространения.
- 96.После того, как между внутренним и внешним проводниками кабеля поместили диэлектрик, скорость распространения электромагнитных волн в кабеле уменьшилась на 63%. Определить диэлектрическую восприимчивость вещества прослойки.
- 97.В вакууме вдоль оси X распространяется плоская электромагнитная волна. Амплитуда напряженности магнитного поля волны равна 1 мА/м. Определить амплитуду напряженности электрического поля волны.
- 98. Два параллельных провода, одни концы которых изолированы, погружены в трансформаторное масло, а вторые индуктивно соединены с генератором электромагнитных колебаний. При частоте 505 МГц в системе возникают стоячие электромагнитные волны. Расстояние между двумя пучностями стоячих волн равно 20 см. Принимая магнитную проницаемость масла равной единице, определить его диэлектрическую проницаемость.
- 99. Колебательный контур состоит из конденсатора емкостью с=888 п Φ и катушки с индуктивностью L=2 м Γ н. На какую длину волны λ настроен контур?
- 100. Длина электромагнитной волны в вакууме, на которую настроен колебательный контур, равна 12 м. Пренебрегая активным сопротивлением контура, определить максимальный заряд на обкладках конденсатора, если максимальная сила тока в контуре I_m =1 A.

ПРИЛОЖЕНИЕ

1. Основные физические постоянные

Физическая постоянная	Обозначение	Числовое значение
Ускорение свободного падения	g	$9,81 \text{ m/c}^2$
Скорость света в вакууме	С	3⋅10 ⁸ м/c
Магнитная постоянная	μ_0	4π·10 ⁻⁷ Гн/м
Электрическая постоянная	ϵ_0	8,85·10 ⁻¹² Ф/м
Элементарный заряд	e	1,6·10 ⁻¹⁹ кг
Отношение заряда электрона к его массе	e/m	1,76·10 ¹¹ Кл/кг

2. Диэлектрическая проницаемость диэлектриков

Вода	81	Парафин	2	Слюда	6
Керосин	2	Масло	5	Стекло	6

3. Удельное сопротивление прводников (при 0° C) ρ , 10^{-6} Ом·м

Вольфрам	0,055	Медь	0,017	Серебро	0,016
Железо	0,098	Алюминий	0,027	Нихром	1,0

4. Свойства некоторых жидкостей (при 20°С)

Вещество	Плотность, кг/м ³	Удельная теплоемкость, Дж/(кгК)
Вода	1000	4190
Глицерин	1200	2430
Касторовое масло	900	1800
Керосин	800	2140
Ртуть	13600	138
Спирт	790	2510

5. Свойства некоторых твердых тел

Вещество	Плотность, кг/м ³	Температура плавления, °С	Удельная теплоемкость, Дж/(кг·К)	Удельная теплота плав- ления, кДж/кг
Алюминий	2600	659	896	322
Железо	7900	1530	500	272
Латунь	8400	900	386	-
Лед	900	0	2100	335
Медь	8600	1100	395	176
Серебро	10500	960	234	88
Сталь	7700	1300	460	-
Цинк	7000	420	391	117
Свинец	11300	327	126	22,6

6. Масса m_0 покоя некоторых частиц

Частица	$\mathrm{m}_{\mathrm{0}},\mathrm{\kappa}\Gamma$	
Электрон	0,0005486	9,1.10 ⁻³¹
Протон	1,007277	1,67·10 ⁻²⁷
α-частица	4,001507	$6,64\cdot10^{-27}$

- При разработке методического пособия была использована литература:
- 1. Физика: Методические указания и контрольные задания для студентовзаочников инженерно-экономических специальностей вузов/В.Л. Прокофьев, В.Ф. Дмитриева, В.А. Рябов и др.; Под ред. В.Л. Прокофьева. – М.: Высш. шк., 1988. – 111 с.
- 2. Чертов А.Г., Воробьев А.А. Задачник по физике: учебное пособие. М.: Высш. шк., 1981. 496 с.
- 3. Трофимова Т.И. Сборник задач по курсу физики: Учебное пособие для студентов втузов. М.: Высш. шк., 1996. 303 с.
- 4. Волькенштейн В.С. Сборник задач по общему курсу физики: Учебное пособие. М.: Наука, 1985. 384 с.
- Физика: Задания к практическим занятиям: Учеб. пособие для вузов/ И.И. Рубан, С.М. Жаврид, Н.Е. Великевич, Ж.П. Лагутина; Под общ. ред. Ж.П. Лагутиной. – Мн.: Высш. шк., 1989. – 236 с.
- 6. Фирганг Е.В. Руководство к решению задач по курсу общей физики. Учеб. пособие для втузов. М.: Высш. шк., 1978. 351 с.