Для обеспечения большей прочности стойки принимаем двутавр № 30, для которого $A=46.5~{\rm cm}^2, J_{\rm y}=337~{\rm cm}^4.$

Расчетное напряжение

$$\sigma = F/A = 300 \cdot 10^3 / 46.5 \cdot 10^2 = 64.5 \text{ M}\Pi \text{a} < [\sigma_{\text{v}}] = 68 \text{ M}\Pi \text{a}.$$

5. ТЕОРИЯ МЕХАНИЗМОВ И МАШИН

Структурный, кинематический анализ и силовой расчет механизма

На рис. 36, 37 представлены кинематические схемы кривошипно-ползунного механизма. Для заданного механизма требуется выполнить:

Задача 5.1. Провести структурный анализ механизма. Определить степень подвижности механизма. Последовательность образования механизма выразить формулой его строения. Построить положение механизма в соответствии с заданными значениями угла, обозначить все звенья и кинематические пары.

Задача 5.2. Для заданного положения механизма провести кинематический анализ графо-аналитическим методом. Построить планы скоростей и ускорений. Определить величины и направления скоростей всех указанных точек механизма, а также величины и направления угловых скоростей и ускорений звеньев, считая угловую скорость кривошипа постоянной.

Задача **5.3.** Выполнить силовой расчет механизма. Определить силы, действующие на механизм. Построить структурные группы «шатун-ползун» и входного звена с приложением к ним всех действующих сил, включая реакции связей, сил и моментов инерции. Построить планы сил.

Исходные данные для задач 5.1 - 5.3 приведены в табл. 41.

Условные обозначения:

 ω_1 — угловая скорость входного звена, c^{-1} ;

 L_{AB} , L_{BE} – линейные размеры звеньев AB и BE, мм;

 L_{AS_1} , L_{BS_2} – межцентровые расстояния, мм;

Y – смещение, мм;

 m_i — масса i-го звена, кг;

 $F_{\rm n.c}$ — сила полезного сопротивления, H;

 $M_{\rm n.c}-$ момент сил полезного сопротивления, ${\rm H\cdot m};$

 \boldsymbol{J}_A – момент инерции звена относительно оси, кг·мм²;

 J_{S2} – момент инерции звена относительно его центра тяжести, кг·мм 2 .

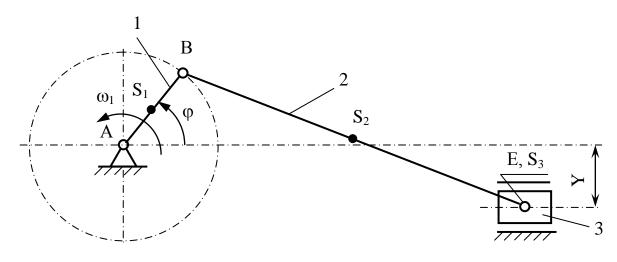


Рис. 36

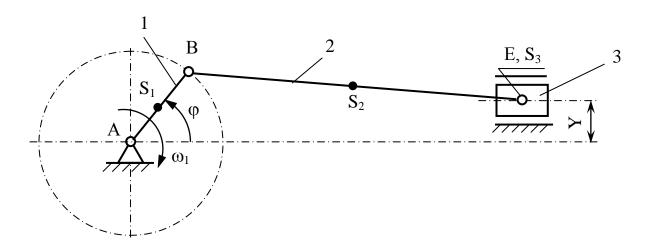


Рис. 37

Таблица 41

Параметр	Вариант									
	1	2	3	4	5	6	7	8	9	10
ω_1	50	60	70	80	75	65	55	40	30	25
L _{AB}	150	170	200	220	250	270	300	320	350	370
L_{AS_1}	0,5 · L _{AB}									
L _{BE}	4 · L _{AB}									
$L_{BS_2} L_{BS_2}$	0,5 · L _{BE}									
Y	0	10	15	20	30	0	10	15	20	30
<i>m</i> ₁	1	1,2	1,5	1,7	2	2,2	2,5	2,7	3	3,2
m_2	4,3 · m ₁									
m_3	2 · m ₁									
F _{n.c}	50	70	90	100	150	175	200	225	300	350
J_A	$0.5 \cdot m_1 \cdot (L_{AB})^2$									
$J_{\mathbb{S}_2}$	$0.1 \cdot m_1 \cdot (L_{BE})^2$									
ф, град	15	30	45	60	75	90	120	130	150	210

Примеры решения и оформления задач

Дано: структурная схема кривошипно-ползунного механизма (рис. 38); $L_{AB}=450~\mathrm{mm}\;;\;\;L_{BE}=4\cdot L_{AB}=1800~\mathrm{mm}\;;\;\;Y=0;\;\;\omega_1=55\;c^{-1}\;;\;\;\phi=45^\circ\;;\;\;m_1=3,5~\mathrm{kf}\;;$ $m_2=15~\mathrm{kf}\;;\;m_3=7~\mathrm{kf}\;;\;J_{S_2}=4,86\;;\;F_{\mathrm{n.c}}=250~\mathrm{H}.$

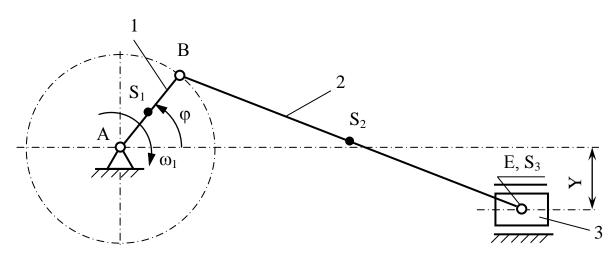


Рис. 38

Задача 5.1. Структурный анализ плоского рычажного механизма

Звенья механизма

Nº	Название	Движение	Особенности движения		
0	Стойка	-	-		
1	Кривошип	вращательное	полный оборот		
2	Шатун	плоскопараллельное	сложное		
3	Ползун	поступательное	возвратное движение		

Кинематические пары

Обозначение	Звенья	Название	Класс
А	0 – 1	вращательная (низшая)	5
В	1 – 2	вращательная (низшая)	5
С	2 – 3	вращательная (низшая)	5
D	3 – 0	поступательная (низшая)	5

Определяем степень подвижности механизма, используя формулу Чебышева П.П.

$$W = 3n - 2p_{H} - p_{R} = 3 \cdot 3 - 2 \cdot 4 - 0 = 9 - 8 = 1$$
,

где n — число подвижных звеньев механизма;

 $p_{\rm H}$ – число низших кинематических пар;

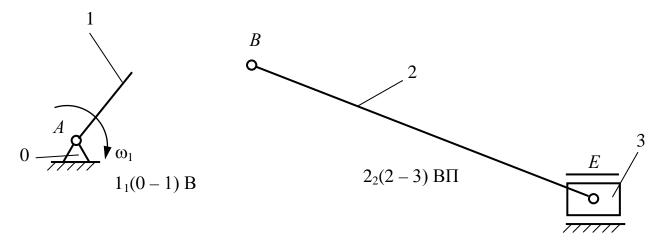
 $p_{\rm B}$ — число высших кинематических пар.

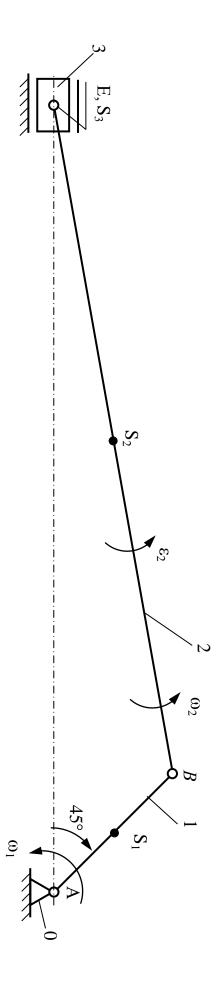
Определяем структурные группы Ассура (рис. 39). Состав и последовательность присоединения групп Ассура в механизме можно выразить его формулой строения: $11(0-1)B \rightarrow 22(2-3)$ ВП. Из этой формулы видно, что к структурной группе входного звена (кривошип 1) со стойкой (0) первого класса присоединена структурная группа второго класса, второго порядка, состоящая из шатуна (2) и ползуна (3).

Построение плана механизма. Выбираем масштабный коэффициент для плана механизма:

$$\mu_L = \frac{L_{AB}}{AB} = \frac{0.45 \text{ M}}{45 \text{ MM}} = 0.01 \frac{\text{M}}{\text{MM}},$$

где AB — отрезок изображающий на плане механизма звено AB и его размер L_{AB} .




Рис. 39

Длину этого отрезка принимают произвольно от 30 до 70 мм.

Находим длины остальных отрезков:

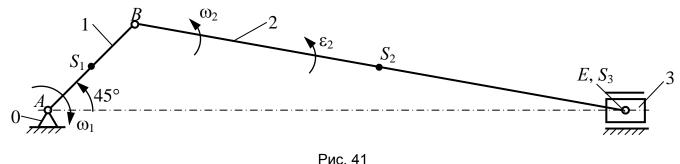
$$BE = \frac{L_{BE}}{\mu_L} = \frac{1,8 \text{ m}}{0,01 \text{ m/mm}} = 180 \text{ mm},$$

$$AS_1 = \frac{L_{AS_1}}{\mu_L} = \frac{0,225}{0,01} = 22,5 \text{ mm},$$

$$BS_2 = \frac{L_{BS_2}}{\mu_L} = \frac{0,9}{0,01} = 90 \text{ mm},$$

$$y = \frac{Y}{\mu_L} = \frac{0}{0,01} = 0.$$

Построения производят в следующем порядке. Наносим на чертеж (рис. 40) ось стойки и на ней выбираем положение точки A. От горизонтальной оси откладываем угол $\phi = 45^{\circ}$, тем самым показывая направление кривошипа AB, на котором откладываем отрезок AB = 45 мм. Далее изображаем направляющую для ползуна, отстоящую от горизонтальной оси на величину y. В данном случае она совпадает с осью для стойки. Затем из точки B циркулем делаем засечку радиусом BE = 180 мм на оси направляющей ползуна. Точка пересечения – искомая точка E. Аналогично находим положение точек S_1 и S_2 : из точки A радиусом 22,5 мм делаем засечку на кривошипе AB, получаем точку S_1 ; из точки B радиусом BE = 180 мм делаем засечку на шатуне BE = 180 мм де



чс. 40

Задача 5.2. Кинематический анализ механизма графо-аналитическим методом (рис. 41).

Построение плана скоростей. План скоростей строим в соответствии с формулой строения механизма. Определим вначале величину и направление скорости V_B точки B кривошипа. Величина определяется формулой

$$V_B = \omega_1 \cdot L_{AB} = 55 \cdot 0.45 = 24,75 \text{ m/c}.$$

Вектор скорости перпендикулярен кривошипу AB и направлен в сторону вращения кривошипа.

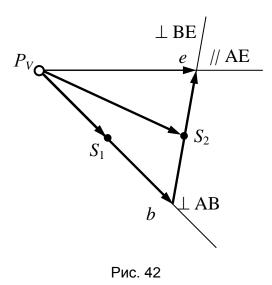
Построение начинаем с выбора полюса плана скоростей P_V и величины отрезка $\overline{P_V b}$ (изображающего вектор $\vec{V_B}$), которую выбираем в пределах 30-100 мм. Определим масштабный коэффициент плана скоростей:

$$\mu_V = \frac{V_B}{P_V b} = \frac{24,75 \text{ M/c}}{50 \text{ MM}} = 0,495 \frac{\text{M/c}}{\text{MM}}.$$

Из полюса откладываем отрезок $P_V b = 50$ мм перпендикулярно к AB (в сторону вращения кривошипа), обозначаем конец вектора стрелкой и буквой b (рис. 42).

Рассмотрим движение точки E по отношению к точке B, затем по отношению к направляющей. Связь между скоростями указанных точек может быть представлена векторным уравнением:

$$\overline{V}_E = \overline{V}_B + \overline{V}_{EB} \, .$$


Решаем уравнение графически. Через точку b — конец ранее найденного отрезка $\overline{P_V b}$ плана скоростей проводим прямую, перпендикулярную направлению BE. Через полюс P_V проводим прямую, параллельную направляющей ползуна.

Пересечение двух указанных лучей отмечаем точкой e . Отрезок $\overline{P_Ve}$ изображает абсолютную скорость $\overline{V_E}$ точки E, а отрезок \overline{be} на плане скоростей изображает скорость $\overline{V_{EB}}$ точки E звена 2 в движении относительно точки B.

Величины этих скоростей определяют по формулам:

$$V_E = P_V e \cdot \mu_V = 41,7 \text{ mm} \cdot 0,495 \text{ m/c/mm} = 20,64 \text{ m/c};$$

 $V_{EB} = b e \cdot \mu_V = 36 \text{ mm} \cdot 0,495 \text{ m/c/mm} = 17,82 \text{ m/c},$

где $P_V e$ и be измеряем с плана скоростей ($\mu_V = 0.495$ м/(с·мм)) (рис. 42).

Для нахождения скоростей точек S_1 и S_2 воспользуемся теоремой подобия для скоростей. На стороне $\overline{P_V b}$ откладываем отрезок $\overline{bS_1}$ подобный отрезку BS_1 на плане механизма и сходно с ним расположенный. Расстояние точки S_1 от точки b плана скоростей найдем из отношения:

$$\frac{P_V b}{b s_1} = \frac{L_{AB}}{L_{BS_1}}\,,$$

$$b s_1 = \frac{P_V b \cdot L_{BS_1}}{L_{AB}} = \frac{50 \cdot 0.5 \cdot L_{AB}}{L_{AB}} = 25 \text{ mm}\,.$$

Аналогично для точки S_2 : $\frac{be}{bs_2} = \frac{L_{BE}}{L_{BS_2}}$, находим $bS_2 = \frac{be \cdot L_{BS_2}}{L_{BE}} = \frac{36}{2} = 18$ мм.

Затем методом засечек ($bS_1=25$ мм, $bS_2=18$ мм) определяем положение точек S_1 и S_2 и соединяем их с полюсом плана скоростей P_V . Получаем направления скоростей \vec{V}_{S_1} и \vec{V}_{S_2} . Величины этих векторов определяются формулами:

$$V_{S_1} = P_V s_1 \cdot \mu_V = 25 \text{MM} \cdot 0,495 \frac{\text{M/c}}{\text{MM}} = 12,38 \text{ M/c};$$

$$V_{S_2} = P_V s_2 \cdot \mu_V = 42 \text{MM} \cdot 0.495 \frac{\text{M/c}}{\text{MM}} = 20.79 \text{ M/c}.$$

Угловая скорость звена 2 определяется равенством:

$$\omega_2 = \frac{V_{EB}}{L_{RF}} = \frac{17,82 \text{ M/c}}{1,8 \text{ M}} = 9,9 \text{ c}^{-1}.$$

Для выявления направления угловой скорости звена 2 вектор скорости \overline{V}_{EB} мысленно переносят в точку E звена 2 и определяют согласно движению точки E, что ω_2 направлена против часовой стрелки. Указываем направление угловой скорости второго звена на плане механизма.

Построение плана ускорений. План ускорений также выполняется в порядке, определяемом формулой строения данного механизма.

Вектор ускорения \vec{a}_B точки B в общем случае определяется нормальной и тангенциальной составляющими:

$$\vec{a}_R = \vec{a}_R^n + \vec{a}_R^\tau,$$

где
$$a_B^n = \omega_1^2 \cdot L_{AB} = 55^2 \cdot 0,45 = 1361,25 \text{ м/c}^2; \ a_B^\tau = \varepsilon_1 \cdot L_{AB}.$$

Вектор нормального ускорения направлен вдоль прямой BA от точки B к центру A, вектор тангенциального ускорения перпендикулярно прямой AB. При $\omega_1 = \text{const}$ угловое ускорение кривошипа $\varepsilon_1 = 0$ и $a_B^{\tau} = 0$.

На плане ускорений (рис. 43) выбираем полюс P_a и величину отрезка P_ab (40 – 70 мм), изображающего вектор $\vec{a}_B = \vec{a}_B^n$. Выбираем масштабный коэффициент плана ускорений:

$$\mu_a = \frac{a_B}{P_a b} = \frac{1361,25 \text{ m/c}^2}{70 \text{ mm}} = 19,45 \frac{\text{m/c}^2}{\text{mm}}.$$

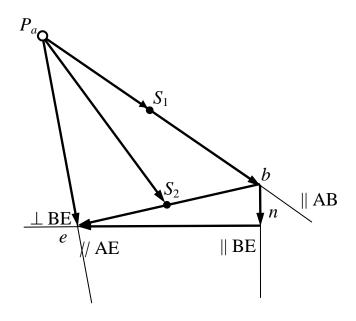


Рис. 43

Откладывая отрезок $P_ab = 70$ мм ускорения точки B из полюса P_a параллельно направлению звена AB (от B к A), обозначают конец стрелкой и буквой b.

Для построения плана ускорений группы (2-3) определяем ускорение точки E. Составим векторное уравнение, рассматривая движение точки E по отношению к B:

$$\overline{a}_E = \overline{a}_B + \overline{a}_{EB}^n + \overline{a}_{EB}^{\tau}.$$

Это уравнение содержит два неизвестных элемента: величины векторов $a_{\scriptscriptstyle E}$, $a_{\scriptscriptstyle EB}^{\scriptscriptstyle au}$.

При этом векторы \bar{a}_{EB}^n , \bar{a}_{EB}^τ , \bar{a}_E имеют направление ($\bar{a}_{EB}^n \parallel BE$, $\bar{a}_{EB}^\tau \perp BE$, $\bar{a}_{EB}^\tau \parallel AE$), а вектор \bar{a}_{EB}^n и величину:

$$6 a_{EB}^n = \frac{V_{EB}^2}{L_{BE}} = \omega_2^2 \cdot L_{BE} = 9.9^2 \cdot 1.8 = 176.42 \text{ m/c}^2.$$

Через точку b ранее построенного отрезка $\overline{P_ab}$ плана ускорений проводят линию, параллельную BE, и откладывают на ней отрезок \overline{bn} , изображающий вектор ускорения \overline{a}_{EB}^n , длина которого равна:

$$bn = \frac{a_{EB}^n}{\mu_a} = \frac{176,42 \,\text{m/c}^2}{19,45 \,\frac{\text{m/c}^2}{\text{mm}}} = 9,07 \,\text{mm}.$$

Далее, через точку n проводят линию, перпендикулярную к BE (направление вектора \overline{a}_{EB}^{τ}), а из полюса P_a откладывают линию, параллельную направляющей AE. Пересечение указанных лучей обозначено точкой e. Отрезок $\overline{P_ae}$ изображает вектор ускорения \overline{a}_E . Соединив точки b и e, получим отрезок, соответствующий ускорению \overline{a}_{EB} полного относительного ускорения точки E относительно B.

По теореме подобия находим длину отрезка bS_2 , определяющего положение точки S_2 на плане ускорений из условия:

$$\frac{be}{bS_2} = \frac{L_{BE}}{L_{BS_2}},$$

где be – измеряем с плана ускорений (мм);

$$bS_2 = \frac{be \cdot L_{BS_2}}{L_{BE}} = \frac{be}{2} = \frac{49.5}{2} = 24.75 \,\text{mm}.$$

Аналогично для точки S_1 найдем $bS_1 = \frac{P_a b \cdot L_{BS_1}}{L_{AB}} = \frac{P_a b}{2} = \frac{70}{2} = 35$ мм.

Методом засечек находим положение точек S_1 и S_2 на векторах $\overline{P_ab}$ и \overline{be} . С плана ускорений определяем величины ускорений:

$$a_E = P_a e \cdot \mu_a = 49,82 \,\mathrm{mm} \cdot 19,45 \,\frac{\mathrm{m/c}^2}{\mathrm{mm}} = 969 \,\mathrm{m/c}^2 \;,$$

$$a_{S_1} = P_a s_1 \cdot \mu_a = 35 \,\mathrm{mm} \cdot 19,45 \,\frac{\mathrm{m/c}^2}{\mathrm{mm}} = 680,75 \,\mathrm{m/c}^2,$$

$$a_{S_2} = P_a s_2 \cdot \mu_a = 55,49 \,\mathrm{mm} \cdot 19,45 \,\frac{\mathrm{m/c}^2}{\mathrm{mm}} = 1079,28 \,\mathrm{m/c}^2,$$

$$a_{EB} = eb \cdot \mu_a = 49,5 \,\mathrm{mm} \cdot 19,45 \,\frac{\mathrm{m/c}^2}{\mathrm{mm}} = 962,78 \,\mathrm{m/c}^2.$$

Величину углового ускорения ε_2 найдем из уравнения:

$$\varepsilon_2 = \frac{a_{EB}}{L_{RE}} = \frac{962,78 \text{ m/c}^2}{1.8 \text{ m}} = 534,88 \text{ c}^{-2}.$$

Перенеся вектор ne (он направлен от $n \kappa e$) в точку E плана механизма звена 2 находим направление ε_2 – против часовой стрелки.

План ускорений построен (см. рис. 43).