Контрольные задания

Введение (Основные законы химии; атомно-молекулярное учение)

Задачи 1 - 20

- 1. Определите объем кислорода при 323 К и 50 кПа, если его масса равна 128 г.
- 2. При нормальных условиях 0,25 л некоторого газа имеют массу 0,19 г. Определите молярную массу этого газа.
- 3. Масса $43,5\cdot10^{-6}$ м³ пара при температуре 62^{0} С и давлении $1,01\cdot10^{5}$ Па равна $0,12\cdot10^{-3}$ кг. Вычислите относительную молекулярную массу и массу одной молекулы вещества.
- 4. Определите относительную молекулярную массу газа, если масса его составляет 8,5 г объем 18,1 л при 27^{0} С и давлении 80 кПа.
- 5. Определите массу диоксида углерода, если объем его составляет 10 л при 200 кПа и 300 К.
- 6. Определите давление $0{,}005$ кг этана в сосуде емкостью $4{\cdot}10^{-2}$ м³ при температуре -5^{0} С.
- 7. Вычислите относительную молекулярную массу газа, если его плотность по воздуху составляет 1,17.
- 8. Найдите точную атомную массу элемента, если из $1,5\cdot10^{-3}$ кг этого элемента получается $3,63\cdot10^{-3}$ кг хлорида этого элемента. Удельная теплоемкость этого элемента 0,347 кДж/(кг·К).
- 9. Металл, удельная теплоемкость которого равна $0,241 \, \mathrm{кДж/(кг \cdot K)}$, образует оксид, содержащий 6,9% кислорода. Найти степень окисления металла.
- 10. На окисление $3,06\cdot10^{-3}$ кг металла расходуется $0,56\cdot10^{-3}$ м³ кислорода (НУ). Удельная теплоемкость металла равна 0,138 кДж/(кг·К). Вычислите точную атомную массу металла.
- 11. Вычислите эквивалентную массу алюминия, если 0,5 г его вытесняют из раствора кислоты 0,056 г водорода.
- 12. При сжигании 1,635 г цинка образуется 2,035 г оксида. Вычислите эквивалентную массу цинка.
- 13. При восстановлении 1,51 г оксида олова водородом образуется 0,36 г воды. Вычислите эквивалентную массу олова.
- 14. Вычислите эквивалентную массу олова в оксидах, содержащих 88,12 и 78,75% олова.
- 15. На восстановление 1,80 г оксида металла израсходовано 0,838 л водорода измеренного при н.у. Вычислите эквивалентную массу металла.
- 16. На нейтрализацию 1,8 г кислоты идет 2,0 г гидроксида натрия. Определите эквивалентную массу кислоты.
- 17. Вычислите эквивалентную массу $Cu(OH)_2$ в реакциях: $Cu(OH)_2 + HCl = CuCl_2 + 2H_2O$; $Cu(OH)_2 + HCl = CuOHCl + H_2O$.
- 18. Вычислите эквивалентную массу ортофосфорной кислоты, если при нейтрализации 9,797 г ее израсходовано 7,998 г гидроксида натрия.
- 19. Одно и то же количество металла соединяется с $0.6 \cdot 10^{-3}$ кг кислорода и $9.534 \cdot 10^{-3}$ кг галогена. Рассчитайте эквивалентную массу галогена.
- 20. Вычислите эквивалентную массу H_3PO_4 при реакциях обмена, в результате которых образуются кислые и средние соли.

Строение атома

Задачи 21 – 40

Определите символы элементов и найдите величины, помеченные знаком «?», в табл. 1. Составьте электронные и электронно-графические формулы для атомов соответствующего элемента в основном состоянии.

1			3.6	TT	Таолица
Номер задачи	Символ	Атомный	Массовое	Число	Число
томер зада т		номер	число	протонов	нейтронов
21	⁴⁸ Ti	?	?	?	?
22	?	23	51	?	?
23	?	?	?	24	28
24	?	?	55	25	?
25	⁷³ Ge	?	?	?	?
26	?	?	?	31	39
27	?	33	75	?	?
28	?	?	?	34	45
29	?	?	80	35	?
30	⁹¹ Zr	?	?	?	?
31	?	41	93	?	?
32	?	39	89	?	?
33	?	?	?	42	54
34	?	?	98	43	?
35	119 ⁵ Sn	?	?	?	?
36	?	51	122	?	?
37	?	?	115	49	?
38	?	?	?	52	76
39	?	?	127	53	?
40	⁴⁵ Sc	?	?	?	?

Периодическая система элементов Д.И. Менделеева

Задачи 41 – 60

На основании положения химического элемента (порядковый номер определяется по табл. 2) в периодической системе Д.И. Менделеева и его электронной формулы составьте прогноз его химических свойств, а также свойств его соединений, ответив на следующие вопросы:

- 1. В каком периоде, группе и подгруппе располагается данный элемент в периодической системе Л.И. Менлелеева?
- 2. Укажите соответствие между положением элемента в периодической системе Д.И. Менделеева и его электронной формулой (номером внешнего энергетического уровня, общим числом валентных электронов, характером их распределения по орбиталям).
- 3. К какому электронному семейству относится данный элемент?
- 4. Охарактеризуйте валентные состояния атомов данного элемента в основном и возбужденном состояниях с помощью электронно-графических формул.
- 5. Чему равны максимальная и минимальная степени окисления атомов этого элемента?
- 6. Является ли он металлом или неметаллом?
- 7. Какие окислительно-восстановительные свойства проявляет простое вещество данного элемента: восстановительные, окислительные или те и другие в зависимости от конкретных условий (явление окислительно-восстановительной двойственности)?
- 8. Образует ли элемент газообразные соединения с водородом? Приведите их формулы.
- 9. Каковы формулы высшего оксида и соответствующего гидроксида этого элемента?
- 10. Какими кислотно-основными свойствами обладают высший оксид и соответствующий гидроксид? Напишите уравнения химических реакций, подтверждающих наличие указанных свойств.

Номер задачи	Порядковый	Номер задачи	Порядковый
помер задачи	номер элемента	тюмер задачи	номер элемента
41	19	51	49
42	20	52	50
43	31	53	35
44	32	54	51
45	37	55	24
46	38	56	15
47	55	57	14
48	26	58	13
49	52	59	33
50	53	60	34

Химическая связь

Задачи 61 – 80

Определите тип химической связи (ковалентная неполярная, ковалентная полярная или ионная) в веществах, указанных в табл. 3 (необходимые для расчетов данные см. в Приложении 1). В случае ковалентной полярной или ионной связи укажите направление смещения электронов. В случае ковалентной (полярной или неполярной) связи постройте электронные схемы молекул (теория Льюиса) и определите кратность связи.

Номер задачи	Вещества	Номер задачи	Вещества
61	дикислород гидрид бериллия	71	бромид калия моносилан
62	тетрабромид кремния бромид стронция	72	хлорид лития диазот
63	трихлорид бора трихлорид азота	73	бромид кальция дибром
64	моногерман фосфин	74	фторид цезия дифторид бериллия
65	трихлорид мышьяка селеноводород	75	тетрабромид углерода бромид бария
66	трибромид бора бромид бериллия	76	бромид цезия трибромид фосфора
67	бромид лития теллуроводород	77	нитрид лития дихлорид серы
68	тетрахлорид кремния хлорид кальция	78	тетраиодид углерода иодид цезия
69	арсин бромид натрия	79	трибромид мышьяка бромид рубидия
70	тетрабромид германия трифторид азота	80	хлорид калия трихлорид фосфора

Энергетика химических реакций

Задачи 81 – 100

Вычислите величины ΔH_{298}^0 для реакций, уравнения которых приведены в табл. 4 (необходимые для расчетов данные см. в Приложении 2). Объясните знак изменения энтальпии. Возможна ли данная реакция при стандартных условиях?

Таблица 4

Номер задачи	Уравнения реакций
81	$CH_3CHO(\Gamma) \rightleftharpoons CH_4(\Gamma) + CO(\Gamma)$
82	$2NO_{(r)} + 2H_{2(r)} \rightleftharpoons N_{2(r)} + 2H_2O_{(r)}$
83	$2NO_{(r)} + O_{2(r)} \rightleftharpoons 2NO_{2(r)}$
84	$C_2Cl_{4(r)} + Cl_{2(r)} \rightleftharpoons C_2Cl_{6(r)}$
85	$4H_{2(r)} + 2NO_{2(r)} \rightleftharpoons 4H_2O_{(r)} + N_{2(r)}$
86	$2NO_{(r)} + Cl_{2(r)} \rightleftharpoons 2NOCl_{(r)}$
87	$2NO_{(\Gamma)} + H_{2(\Gamma)} \rightleftharpoons N_2O_{(\Gamma)} + H_2O_{(\Gamma)}$
88	$CO_{(\Gamma)} + Cl_{2(\Gamma)} \rightleftarrows COCl_{2(\Gamma)}$
89	$H_{2(\Gamma)} + Br_{2(\Gamma)} \rightleftharpoons 2HBr_{(\Gamma)}$
90	$H_2O_{2(r)} + H_{2(r)} \rightleftharpoons 2H_2O_{(r)}$
91	$CdO_{(TB)} + H_{2(\Gamma)} \rightleftharpoons Cd_{(TB)} + H_2O_{(\Gamma)}$
92	$H_{2(\Gamma)} + I_{2(\Gamma)} \rightleftharpoons 2HI_{(\Gamma)}$
93	$Fe_{(TB)} + Cl_{2(\Gamma)} \rightleftarrows FeCl_{2(TB)}$
94	$2NO_{(r)} + Br_{2(r)} \rightleftharpoons 2NOBr_{(r)}$
95	$2N_2O_{5(\Gamma)} \rightleftharpoons 4 NO_{2(\Gamma)} + O_{2(\Gamma)}$
96	$HCHO_{(r)} \rightleftharpoons H_{2(r)} + CO_{(r)}$
97	$C_{(TB)} + CO_{2(\Gamma)} \rightleftharpoons 2CO_{(\Gamma)}$
98	$2O_{3(\Gamma)} \rightleftharpoons 3O_{2(\Gamma)}$
99	$CO_{(\Gamma)} + H_2O_{(\Gamma)} \rightleftharpoons CO_{2(\Gamma)} + H_{2(\Gamma)}$
100	$N_{2(\Gamma)} + O_{2(\Gamma)} \rightleftharpoons 2NO_{(\Gamma)}$

Химическая кинетика и равновесие

Задачи 101 – 120

Для реакции, соответствующей номеру Вашей задачи в предыдущем задании (см. табл. 4):

- 1) составьте выражение для скорости реакции (закон действующих масс);
- 2) составьте выражение для константы равновесия;
- 3) вычислите, во сколько раз изменится скорость реакции при заданных изменениях:
 - а) температуры,
 - б) общего давления (при изменении объема системы),
 - в) концентраций реагентов.
- 4) укажите, как необходимо изменить внешние параметры (температуру, общее давление, концентрации реагентов), чтобы сместить равновесие вправо. Все необходимые для решения данные приведены в табл. 5 [температурный коэффициент – γ; в трех последних столбцах указано, во сколько раз увеличили концентрацию первого реагирующего вещества (столбец 5), второго реагирующего вещества (столбец 6) и общее давление в системе (столбец 7)].

Таблица 5

Номер задачи	γ	T ₁ , K	T ₂ , K	$\frac{\mathbf{C}_{1}^{"}}{\mathbf{C}_{1}}$	$\frac{C_2^{"}}{C_2}$	P" P
101	3,0	273	293	3	-	3
102	2,5	345	365	2	5	4
103	2,1	448	498	3	4	3
104	2,7	345	355	4	8	8
105	3,2	256	276	2	2	2
106	2,0	364	394	3	2	3
107	3,0	372	392	5	5	4
108	2,1	283	293	2	8	4
109	2,6	291	321	5	4	3
110	2,5	217	257	5	1	5
111	3,3	328	378	10	5	5
112	3,7	339	399	3	4	3
113	2,7	341	381	20	9	4
114	3,4	253	273	2	5	2
115	3,5	245	265	10	-	10
116	2,8	347	377	3	-	5
117	3,3	259	289	20	4	8
118	3,2	292	322	4	-	7
119	2,1	224	274	5	3	6
120	3,1	296	336	2	4	4

Окислительно-восстановительные реакции (ОВР)

Задачи 121 – 140

Для реакций, протекающих по приведенным схемам, проведите уравнивание методом электронного баланса. Для каждой реакции укажите, какое вещество является окислителем, а какое – восстановителем и за счет каких атомов. Определите типы OBP.

Схемы реакций

121. Al + KClO₄ + H₂SO₄
$$\rightarrow$$
 KCl + Al₂(SO₄)₃ + H₂O
K₂SeO₃ \rightarrow K₂SeO₄ + K₂Se

122.
$$Zn + KMnO_4 + H_2SO_4 \rightarrow ZnSO_4 + MnSO_4 + K_2SO_4 + H_2O$$

 $P_2H_4 + KOH + H_2O \rightarrow PH_3 + KH_2PO_2$

123. Al +
$$K_2Cr_2O_7 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + Al_2(SO_4)_3 + K_2SO_4 + H_2O$$

 $P_2O_3 + H_2O \rightarrow PH_3 + H_3PO_4$

124.
$$Fe_2O_3 + KNO_3 + KOH \rightarrow K_2FeO_4 + NO + H_2O$$

 $HClO_3 \rightarrow ClO_2 + HClO_4 + H_2O$

125.
$$H_2C_2O_4 + MnO_2 + H_2SO_4 \rightarrow CO_2 + MnSO_4 + H_2O$$

 $P + KOH + H_2O \rightarrow KH_2PO_2 + PH_3$

126.
$$Sb + KClO_4 + H_2SO_4 \rightarrow Sb_2(SO_4)_3 + KCl + H_2O$$

 $Te + KOH \rightarrow K_2TeO_4 + K_2Te + H_2O$

127.
$$Mn(NO_3)_2 + PbO_2 + HNO_3 \rightarrow HMnO_4 + Pb(NO_3)_2 + H_2O$$

 $As + NaOH \rightarrow Na_3As + Na_3AsO_3 + H_2O$

128.
$$NaAsO_2 + I_2 + Na_2CO_3 + H_2O \rightarrow NaH_2AsO_4 + NaI + CO_2$$

 $Cu(NO_3)_2 \rightarrow CuO + NO_2 + O_2$

129.
$$H_2C_2O_4 + KClO_3 \rightarrow K_2CO_3 + CO_2 + ClO_2 + H_2O$$

 $NH_4NO_2 \rightarrow N_2 + H_2O$

130.
$$Hg + NaNO_3 + H_2SO_4 \rightarrow Na_2SO_4 + HgSO_4 + NO + H_2O$$

 $LiClO_3 \rightarrow LiCl + O_2$

131.
$$Na_2SO_3 + K_2Cr_2O_7 + H_2SO_4 \rightarrow Na_2SO_4 + Cr_2(SO_4)_3 + K_2SO_4 + H_2O KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$$

132.
$$Na_2SeO_3 + Cl_2 + NaOH \rightarrow Na_2SeO_4 + NaCl + H_2O$$

 $H_2MnO_4 \rightarrow HMnO_4 + MnO_2 + H_2O$

133.
$$Na_3AsO_3 + K_2Cr_2O_7 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + Na_3AsO_4 + K_2SO_4 + H_2O$$

 $Br_2 + NaOH \rightarrow NaBr + NaBrO + H_2O$

- 134. $SO_2 + NaIO_3 + H_2O \rightarrow I_2 + Na_2SO_4 + H_2SO_4$ $MnO_2 + H_2SO_4 \rightarrow Mn_2(SO_4)_3 + O_2 + H_2O$
- 135. $Na_2S_2O_4 + AgCl + NH_4OH \rightarrow (NH_4)_2SO_3 + NaCl + Ag + H_2O$ $MnO_2 \rightarrow Mn_2O_3 + O_2$
- 136. $AgNO_3 + AsH_3 + H_2O \rightarrow Ag + H_3AsO_4 + HNO_3$ $MnO_2 + H_2SO_4 \rightarrow MnSO_4 + O_2 + H_2O$
- 137. $Na_2SeO_3 + Cl_2 + NaOH \rightarrow Na_2SeO_4 + NaCl + H_2O$ $I_2 + Ba(OH)_2 \rightarrow Ba(IO_3)_2 + BaI_2 + H_2O$
- 138. $MnSO_4 + NaBiO_3 + HNO_3 \rightarrow NaMnO_4 + Bi(NO_3)_3 + H_2SO_4 + NaNO_3 + H_2O$ $LiClO_3 \rightarrow LiClO_4 + LiCl$
- 139. Se + AuCl₃ + H₂O \rightarrow Au + H₂SeO₃ + HCl MnO₂ + NaOH \rightarrow MnO(OH) + Na₃MnO₄ + H₂O
- 140. $PH_3 + KMnO_4 + H_2SO_4 \rightarrow H_3PO_4 + MnSO_4 + K_2SO_4 + H_2O$ $KClO_3 \rightarrow KCl + O_2$

Растворы. Способы выражения содержания вещества в растворе

Задачи 141 – 160

Произведите необходимые вычисления и найдите недостающие величины, обозначенные знаком «?» в строке табл. 6, соответствующей номеру Вашей задачи (все растворы - водные).

Номер задачи	Растворенное вещество	Масса растворенного вещества, г	Масса растворителя, г	Объем раствора, мл	Плотность раствора, г /см ³	Массовая доля, %	Молярная доля, %	Молярная концент- рация, моль/л	Нормальная концентрация моль/л	Моляльная концентрация моль/кг
141	НО3 (конц.)	149,1	?	150	1,42	?	?	?	?	?
142	NH ₄ OH (конц.)	?	?	120	0,90	29	?	?	?	?
143	HBr	144	156	?	1,50	?	?	?	?	?
144	КОН	?	?	300	?	?	20,80	11,60	?	?
145	NaOH	?	38,75	?	1,53	50	?	?	?	?
146	НІ	?	?	110	?	?	15,7	7,57	?	?
147	H ₂ SO ₄	?	8,83	120	?	?	?	18	?	?
148	HCl (конц.)	?	97,46	130	1,19	?	?	?	?	?
149	СН ₃ СООН (конц.)	?	?	140	?	?	99,3	17,4	?	?
150	H ₃ PO ₄	216,75	?	150	1,70	?	?	?	?	?
151	НГ(конц.)	?	?	225	1,16	49	?	?	?	?
152	HClO ₄	?	?	75	?	?	29,46	11,6	?	?
153	Na ₂ CO ₃	42,13	195,87	?	1,19	?	?	?	?	?
154	NH ₄ NO ₃	?	61,3	?	1,23	50	?	?	?	?
155	NaCl	?	?	300	?	?	3,30	1,83	?	?
156	CaCl ₂	?	125,64	150	?	?	?	5,03	?	?
157	(NH ₄) ₂ SO ₄	?	?	250	?	?	3,29	1,69	?	?
158	Na ₂ SO ₄	43,64	?	400	1,09	?	?	?	?	?
159	NH ₄ Cl	?	?	50	1,06	20	?	?	?	?
160	C ₂ H ₅ OH	?	?	125	?	?	20,6	8,08	?	?

Растворы неэлектролитов Задачи 161 – 180

- 161. Чему равно осмотическое давление раствора, содержащего в 1 л раствора 3,1 г анилина, $C_6H_5NH_2$ при $T=21^0C$.
- 162. Осмотическое давление раствора, содержащего 0,4 г растворенного вещества в 660 мл раствора, при 27^{0} С равно 24,91 кПа. Вычислите относительную молекулярную массу растворенного вещества.
- 163. Определите осмотическое давление раствора, содержащего 190,08 г глюкозы, $C_6H_{12}O_6$, в 4 л раствора при 27^0C .
- 164. Рассчитайте, чему равно осмотическое давление раствора, содержащего в 1 л 18,4 г глицерина $C_3H_8O_3$ при 0^0C .
- 165. В 0,5 л раствора содержится 2 г неэлектролита, и этот раствор при 0^{0} С имеет осмотическое давление, равное $0.51\cdot10^{5}$ Па. Определите молекулярную массу растворенного вещества.
- 166. Определите давление пара 10%-го раствора мочевины $CO(NH_2)_2$ в воде при 100^{0} С.
- 167. Определите молекулярную массу анилина, зная, что при 30° С давление пара раствора, содержащего 3,09 г анилина, $C_6H_5NH_2$ в 370,0 г эфира C_4H_{10} О равно 0,858· 10^5 Па, а давление чистого эфира при той же температуре 0,864· 10^5 Па.
- 168. Давление пара водного раствора неэлектролита при 80^{0} С равно $0,14\cdot10^{5}$ Па. Сколько молей воды приходится на 1 моль растворенного вещества в этом растворе, если давление пара воды при этой температуре равно 47375 Па.
- 169. Давление водяного пара при 65^{0} С равно 25003 Па. Определите давление водяного пара над раствором, содержащим 34,2 г сахара $C_{12}H_{22}O_{11}$ в 90,0 г воды при той же температуре.
- 170. Давление пара воды при 50° C равно 12334 Па. Вычислите давление пара раствора, содержащего 50 г этиленгликоля, $C_2H_4(OH)_2$ в 900 г воды.
- 171. При растворении 3,24 г серы в 40,0 г бензола температура кипения повысилась на $0,91^{0}$ С. Из скольких атомов состоит молекула серы в растворе, если эбулиоскопическая константа бензола равна 2,57.
- 172. Раствор, содержащий 80 г нафталина $C_{10}H_8$ в 200 г диэтилового эфира, кипит при 35,7 0 C, а чистый эфир при 35 0 C. Определите эбулиоскопическую константу эфира.
- 173. Определите температуру кристаллизации раствора, содержащего 54 г глюкозы, $C_6H_{12}O_6$, в 250 г воды.
- 174. При какой температуре будет кипеть 50%-ный раствор сахара, $C_{12}H_{22}O_{11}$ в воде, если эбулиоскопическая константа воды равна 0,52.
- 175. Вычислите количество этиленгликоля, $C_2H_4(OH)_2$, которое необходимо прибавить на каждый килограмм воды для приготовления раствора с температурой кристаллизации 15^0 C.
- 176. Раствор, содержащий 2,05 г растворенного вещества в 50 г воды, замерзает при 0,93⁰C. Вычислить относительную молекулярную массу растворенного вещества. криоскопическая константа воды равна 1,86.
- 177. Раствор, содержащий 4,6 г глицерина, $C_3H_5(OH)_3$, в 200 г ацетона, кипит при температуре 56,77 0 С. Чистый ацетон закипает при температуре 56,3 0 С. Вычислите эбулиоскопическую константу ацетона.
- 178. При какой температуре будет кристаллизоваться 45%-ный раствор метилового спирта в воде?
- 179. Раствор, содержащий 3,04 г камфоры, $C_{10}H_{16}O$, в 100 г бензола кипит при $80,71^{0}C$. Температура кипения бензола $80,2^{0}C$. Определить эбулиоскопическую константу бензола.
- 180. Сколько граммов карбамида $CO(NH_2)_2$ необходимо растворить в 125 г воды, чтобы температура кипения повысилась на 0.26^{0} С. Эбулиоскопическая константа воды 0.52 град.

Растворы электролитов

Задачи 181 – 200

- 181. Определите pH раствора, в 3 л которого содержится $8,1\cdot10^{-4}$ моль ионов (OH $^-$).
- 182. Вычислите рН и рОН 0,1н раствора HCN, если константа диссоциации $K_a = 7 \cdot 10^{-10}$.
- 183. Определите рН и рОН 0,1н раствора NаОН, если $\gamma = 0.76$.
- 184. Определите молярную концентрацию раствора CH_3COOH , если pH = 6, а степень диссоциации равна 1,3%.
- 185. Определите pH и pOH 0,1н раствора CH_3COOH , если константа диссоциации кислоты $K_a = 1,8 \cdot 10^{-5}$.
- 186. Определите pH и pOH раствора, содержащего 0,1 г/л NaOH, если степень диссоциации равна 1
- 187. Определите pH и pOH насыщенного раствора $Zn(OH)_2$, если его растворимость $2,3\cdot10^{-6}$ моль/л, а константа диссоциации $Zn(OH)_2$ равна $4,0\cdot10^{-5}$.
- 188. Вычислите растворимость сульфата бария в 0,1 M растворе сульфата натрия, если $\Pi P_{\text{BaSO}_4} = 10^{-10}$.
- 189. Произведение растворимости $\Pi P_{Mg(OH)_2} = 3 \cdot 10^{-11}$. Выпадет ли осадок, если к 2 л раствора $Mg(NO_3)_2$, содержащему 1,48 г этой соли, добавить 1 л 0,05н раствора NaOH?
- 190. Произведение растворимости $\Pi P_{PbI_2} = 1{,}35\cdot 10^{-8}$. Вычислите растворимость PbI_2 и концентрацию ионов Pb^{2+} и Γ .
- 191. Определить, во сколько раз растворимость $CaSO_4$ в 0,01 м растворе Na_2SO_4 меньше, чем в чистой воде, если $\Pi P_{CaSO_4} = 6,26\cdot 10^{-5}$.
- 192. Сколько граммов ионов Ba^{2+} содержится в 200 мл насыщенного раствора карбоната бария, если $\Pi P_{BaCO_3} = 8 \cdot 10^{-9}$?
- 193. Вычислите $\Pi P_{\mathrm{Mg(OH_2)}}$, если его растворимость равна $2 \cdot 10^{-4}$ моль/л.
- 194. Составьте молекулярное и ионное уравнение гидролиза K_2S . Определите степень гидролиза (для первой ступени) и pH в 0,001 M растворе K_2S ($K_{H,S}^{'}=1,1\cdot 10^{-7}$).
- 195. Определите степень гидролиза (для первой ступени) и pH в 0,01 м растворе Na_2CO_3 ($K'_{H_2CO_3} = 4,45\cdot 10^{-7}$). Напишите уравнение реакции гидролиза в молекулярном и ионном виде.
- 196. При смешении растворов $Al_2(SO_4)_3$ и K_2S в осадок выпадает гидроксид и выделяется газ. Укажите причину этого процесса и составьте соответствующие молекулярные и ионные уравнения.
- 197. Составьте молекулярные и ионные уравнения реакции гидролиза AlCl₃ и K₂SiO₃ и определите реакцию среды раствора.
- 198. Составьте молекулярные и ионные уравнения реакции гидролиза K_3PO_4 и $Cu(NO_3)_2$. Определите реакцию среды раствора.
- 199. Составьте молекулярные и ионные уравнения гидролиза Na_2CO_3 и NH_4Cl . Рассчитайте pH в 0,1н растворе NH_4Cl ($K_{NH_4OH}=1,85\cdot 10^{-5}$).
- 200. Составьте молекулярные и ионные уравнения гидролиза ZnSO₄ и CH₃COONH₄. Рассчитайте pH в 0,01н растворе CH₃COONH₄, если $K_{\text{CH}_3\text{COOH}} = 1,75 \cdot 10^{-5}$, $K_{\text{NH}_4\text{OH}} = 1,85 \cdot 10^{-5} \, .$

Электродные потенциалы и напряжение гальванического элемента. Коррозия металлов

Задачи 201 – 220

По заданию из табл. 7 составьте схему гальванического элемента, напишите электронные уравнения электродных процессов и суммарное уравнение соответствующей окислительно-восстановительной реакции. Вычислите концентрацию раствора электролита (задачи 201...205 или ЭДС (задачи 206...210)) (обозначения «первый электрод» и «второй электрод» не связаны с понятиями «катод» и «анод»). Необходимые для решения данные приведены в приложении 3.

Номер задачи	Металл 1-го электрода	Электролит 1-го электрода	Концентрация электролита 1-го электрода, моль/л	Металл 2-го электрода	Электролит 2-го электрода	Концентрация электролита 2-го электрода, моль/л	ЭДС, В
201	Pb	$Pb(NO_3)_2$	0,10	Tl	TlNO ₃	?	0,180
202	Ni	NiSO ₄	1,00	In	$In_2(SO_4)_3$?	0,133
203	Zn	ZnSO ₄	0,01	Zn	ZnSO ₄	?	0,059
204	Ag	AgNO ₃	1,00	Mg	$Mg(NO_3)_2$?	3,192
205	Hg	HgCl ₂	1,00	Al	AlCl ₃	?	2,536
206	Bi	Bi(NO ₃) ₃	0,01	Be	$Be(NO_3)_2$	1,00	?
207	Ag	AgNO ₃	1,00	Al	$Al(NO_3)_3$	0,001	?
208	Hg	HgCl ₂	0,01	Al	AlCl ₃	1,00	?
209	Pb	Pb(NO ₃) ₂	0,10	Tl	Tl(NO ₃) ₃	0,001	?
210	Cd	CdCl ₂	1,00	Cr	CrCl ₂	0,10	?

- 211. Как протекает контактная коррозия цинка и кадмия во влажном воздухе? Составьте электронные уравнения анодного и катодного процессов. Какие продукты при этом образуются?
- 212. В чем различия в коррозии оцинкованного и луженого железа при нарушении целостности покрытий во влажной атмосфере? Приведите электронные уравнения анодного и катодного процессов в обоих случаях. Укажите продукты коррозии.
- 213. Два стальных листа скреплены в одном случае алюминиевыми, а в другом медными заклепками. Как будут происходить процессы коррозии в морской воде в том и другом случаях? Приведите электронные уравнения анодных и катодных процессов.
- 214. Изделие, составленное из медных и никелевых фрагментов, эксплуатируется в разбавленном растворе соляной кислоты. Как будет происходить процесс контактной коррозии? Составьте электронные уравнения анодного и катодного процессов.
- 215. Одно из свинцовых изделий имеет никелевое покрытие, а другое серебряное покрытие. Как происходит коррозия каждого из них во влажном воздухе при нарушении целостности покрытия? Приведите электронные уравнения анодных и катодных процессов, укажите состав коррозионных продуктов.
- 216. Для защиты от коррозии стальных корабельных винтов в морской воде широко используют цинковые протекторы. Объясните принципиальные основы такой защиты. Приведите электронные уравнения анодного и катодного процессов.
- 217. Объясните механизм защиты подземного стального трубопровода с помощью магниевого протектора, если почвенные воды в данной местности имеют ярко

- выраженный кислотный характер. Приведите электронные уравнения анодного и катодного процессов.
- 218. В соляную кислоту опустили две цинковые пластинки, одна из которых частично помеднена. Как происходит коррозия в том и в другом случае? Составьте электронные уравнения анодных и катодных процессов. Какие продукты при этом образуются?
- 219. Во влажном воздухе находятся две железные пластинки. Часть поверхности одной из них покрыта цинком, а часть поверхности другой медью. Как происходит коррозия в том и другом случае? Составьте электронные уравнения анодных и катодных процессов. Какие продукты при этом образуются?
- 220. Как протекает коррозия никеля в контакте с серебром во влажном воздухе? Составьте электронные уравнения анодного и катодного процессов. Какие продукты при этом образуются?

Электролиз

Задачи 221 – 240

Как будет происходить электролиз водного раствора электролита (табл. 8) при использовании инертных электродов? Приведите уравнение диссоциации электролита и поясните возможность участия каждого из образующихся ионов в электродных реакциях. Составьте электронные уравнения процессов, протекающих на электродах. Вычислите массу (для твердых и жидких) или объем при нормальных условиях (для газообразных) веществ, образующихся на электродах (если на катоде выделяются два вещества, расчет проводите только для металла). Данные, необходимые для решения, приведены в табл. 8 (t – время проведения электролиза, I – сила тока).

Номер задачи	Вещество	t	I, A
221	K ₂ SO ₄	2 ч	15
222	AlCl ₃	3 ч 20 мин	8
223	NiSO ₄	35 мин	5
224	$HgCl_2$	2 ч 10 мин	2
225	Na_2SO_4	1 ч 15 мин	10
226	$AgNO_3$	3 ч 40 мин	18
227	$CuCl_2$	55 мин	14
228	$NiBr_2$	2 ч 15 мин	5
229	$MgCl_2$	1 ч	2
230	MnI_2	2 ч 10 мин	6
231	$Cu(NO_3)_2$	3 ч 15 мин	8
232	FeCl ₃	45 мин	9
233	$ZnSO_4$	1 ч 15 мин	12
234	$Al_2(SO_4)_3$	2 ч 45 мин	5
235	NaCl	25 мин	8
236	KBr	2 ч 05 мин	4
237	CaCl ₂	1 ч 25 мин	9
238	MgSO ₄	2 ч 40 мин	5
239	NaNO ₃	45 мин	7
240	$Hg(NO_3)_2$	1 ч 35 мин	15

Таблица вариантов контрольных заданий

Номер	Номера задач											
варианта		для п		для второго семестра								
01	1	21	41	61	81	101	121	141	161	181	201	221
02	2	22	42	62	82	102	122	142	162	182	202	222
03	3	23	43	63	83	103	123	143	163	183	203	223
04	4	24	44	64	84	104	124	144	164	184	204	224
05	5	25	45	65	85	105	125	145	165	185	205	225
06	6	26	46	66	86	106	126	146	166	186	206	226
07	7	27	47	67	87	107	127	147	167	187	207	227
08	8	28	48	68	88	108	128	148	168	188	208	228
09	9	29	49	69	89	109	129	149	169	189	209	229
10	10	30	50	70	90	110	130	150	170	190	210	230
11	11	31	51	71	91	111	131	151	171	191	211	231
12	12	32	52	72	92	112	132	152	172	192	212	232
13	13	33	53	73	93	113	133	153	173	193	213	233
14	14	34	54	74	94	114	134	154	174	194	214	234
15	15	35	55	75	95	115	135	155	175	195	215	235
16	16	36	56	76	96	116	136	156	176	196	216	236
17	17	37	57	77	97	117	137	157	177	197	217	237
18	18	38	58	78	98	118	138	158	178	198	218	238
19	19	39	59	79	99	119	139	159	179	199	219	239
20	20	40	60	80	100	120	140	160	180	200	220	240
21	1	22	43	62	81	102	123	144	165	186	187	188
22	2	24	45	64	83	103	125	145	166	187	208	229
23	3	26	47	66	85	105	127	146	167	188	209	230
24	4	28	49	68	87	106	128	147	169	190	210	231
25	5	30	51	70	89	108	130	148	171	192	211	232
26	6	32	53	72	91	110	132	149	173	194	213	234
27	7	34	55	74	93	112	134	150	175	196	215	236
28	8	36	57	76	95	114	136	151	176	197	216	237
29	9	38	58	77	97	116	137	152	177	198	217	238
30	10	40	59	78	99	118	139	153	178	200	219	240
31	11	21	42	61	82	102	121	142	162	182	203	223
32	12	23	44	63	84	104	123	144	164	183	204	224
33	13	25	46	65	86	106	124	146	166	184	205	225
34	14	27	48	67	88	108	126	148	168	186	206	226
35	15	29	50	69	90	110	128	150	170	188	208	228
36	16	31	52	71	92	112	130	152	172	190	210	230
37	17	33	54	73	94	114	132	154	174	191	212	232
38	18	35	56	75	96	116	134	156	176	193	214	234
39	19	37	58	77	98	118	136	158	178	195	216	236
40	20	39	60	79	100	120	138	160	180	197	218	238

Приложения

 $\begin{picture}(150,0) \put(0,0){T} \hline \end{picture} \begin{picture}(150,0) \put(0,0){T} \put(0$

Н						
2,1						
Li	Be	В	С	N	О	F
1,0	1,5	2,0	2,5	3,0	3,5	4,0
Na	Mg	Al	Si	P	S	Cl
0,9	1,2	1,5	1,8	2,1	2,5	3,0
K	Ca	Ga	Ge	As	Se	Br
0,8	1,0	1,6	1,8	2,0	2,4	2,8
Rb	Sr	In	Sn	Sb	Te	I
0,8	0,9	1,7	1,8	1,9	2,1	2,5
Cs	Ba	Tl	Pb	Bi	Po	At
0,7	0,9	1,8	1,9	1,9	2,0	2,2

Приложение 2

Стандартные энтальпии образования некоторых веществ

Вещество	$\Delta { m H_f^0(298)},$ кДж/моль	Вещество	$\Delta { m H_f^0(298)},$ кДж/моль
$\mathrm{Br}_{2(\Gamma)}$	30,91	$\mathrm{HBr}_{(\Gamma)}$	-36,38
$C_{(TB)}$	0,00	$HCHO_{(\Gamma)}$	-115,90
$\mathrm{Cd}_{(\mathrm{TB})}$	0,00	$\mathrm{HI}_{(\Gamma)}$	26,36
$CdO_{(TB)}$	-258,99	$H_{2(\Gamma)}$	0,00
$CH_3CHO_{(\Gamma)}$	-166,00	$H_2O_{(\Gamma)}$	-241,81
$\mathrm{CH}_{4(\Gamma)}$	-74,85	$H_2O_{2(r)}$	-135,88
$ClO_{2(\Gamma)}$	104,60	$I_{2(\Gamma)}$	62,43
$\text{Cl}_{2(r)}$	0,00	$NO_{(r)}$	91,26
$\mathrm{CO}_{(\Gamma)}$	-110,53	$NOBr_{(\Gamma)}$	81,84
$\mathrm{COCl}_{2(\Gamma)}$	-219,50	$NOCl_{(\Gamma)}$	52,59
$\mathrm{CO}_{2(\Gamma)}$	-393,51	$NO_{2(\Gamma)}$	34,19
$C_2Cl_{4(\Gamma)}$	19,61	$N_{2(\Gamma)}$	0,00
$C_2Cl_{6(\Gamma)}$	27,13	$N_2O_{(\Gamma)}$	82,01
Fe _(тв)	0,00	$N_2O_{5(\Gamma)}$	13,30
FeCl _{2(TB)}	-341,01	$\mathrm{O}_{2(\Gamma)}$	0,00
$F_{2(\Gamma)}$	0,00	$O_{3(\Gamma)}$	142,26

Стандартные электродные потенциалы $\phi^0_{Me^{n_+},Me}$ некоторых металлов в водных растворах при 298К

Электрод	$\phi_{\mathrm{Me}^{n_+},\mathrm{Me}}^0$,B	Электрод	$\phi^0_{\mathrm{Me}^{n+},\mathrm{Me}}$,B	Электрод	$\phi^0_{\mathrm{Me}^{\mathrm{n}_+},\mathrm{Me}}$,B
Li ⁺ , Li	-3,045	Al ³⁺ , Al	-1,662	Ni ²⁺ , Ni	-0,250
Rb ⁺ , Rb	-2,925	Mn ²⁺ , Mn	-1,180	Sn ²⁺ , Sn	-0,136
K ⁺ , K	-2,925	Cr ²⁺ , Cr	-0,913	Pb ²⁺ , Pb	-0,126
Cs ⁺ , Cs	-2,923	Zn ²⁺ , Zn	-0,763	Fe ³⁺ , Fe	-0,036
Ra ²⁺ , Ra	-2,916	Cr ³⁺ , Cr	-0,740	H^+ , H_2	0,000
Ba ²⁺ , Ba	-2,906	Fe ²⁺ , Fe	-0,440	Bi ³⁺ , Bi	+0,215
Ca ²⁺ , Ca	-2,866	Cd ²⁺ , Cd	-0,403	Cu ²⁺ , Cu	+0,337
Na ⁺ , Na	-2,714	In ³⁺ , In	-0,343	Ag ⁺ , Ag	+0,799
Mg ²⁺ , Mg	-2,363	Tl ⁺ , Tl	-0,336	Hg ²⁺ , Hg	+0, 854
Be ²⁺ , Be	-1,850	Co ²⁺ , Co	-0,227	Au ³⁺ , Au	+1,498