Гидрогазодинамика Типовой расчет по курсу «Гидрогазодинамика» Чусов Сергей Ильич, доцент кафедры ПГТ

Расчет параметров течения в сопле Лаваля

Задано:

1. Закон изменения площади поперечного сечения сопла Лаваля по длине (координата x) определяется уравнениями:

$$\overline{F}(x) = \frac{ \sqrt[N+1]{N} \cdot x^2 + 1}{1000}$$
 для $-2 \le x < 0$
$$\overline{F}(x) = \frac{1 + \sqrt{x}}{\sqrt[N+1]{N+1}}$$
 для $0 \le x < 3$
$$\overline{F}(x) = \frac{1 + \sqrt{x}}{1000}$$
 для $-2 \le x < 0$
$$\overline{F}(x) = \frac{1 + \frac{x^{\sqrt{2}}}{\sqrt{N+9}}}{1000}$$
 для $0 \le x < 3$
$$\overline{F}(x) = \frac{1 + \frac{x^{\sqrt{2}}}{\sqrt{N+9}}}{1000}$$
 для $0 \le x < 3$
$$\overline{F}(x) = \frac{1 + \frac{x^{\sqrt{2}}}{\sqrt{N+9}}}{1000}$$
 для $0 \le x < 3$
$$\overline{F}(x) = \frac{1 + \frac{x^{\sqrt{2}}}{\sqrt{N+9}}}{1000}$$
 для $0 \le x < 3$
$$\overline{F}(x) = \frac{1 + \frac{x^{\sqrt{2}}}{\sqrt{N+9}}}{1000}$$
 для $0 \le x < 3$
$$\overline{F}(x) = \frac{1 + \frac{x^{\sqrt{2}}}{\sqrt{N+9}}}{1000}$$
 для $0 \le x < 3$

где N — номер студента по журналу.

№ студента по журналу	№ профиля сопла Лаваля	$p_0 \cdot 10^6$, Πa	T_0 , K
1	1	0,1	300
2	2	0,2	325
3	3	0,3	350
4	1	0,4	375
5	2	0,5	400
6	3	0,6	425
7	1	0,7	450
8	2	0,8	475
9	3	0,9	500
10	1	1,1	525
11	2	1,2	550
12	3	1,3	575
13	1	1,4	600
14	2	1,5	625
15	3	1,6	650

Гидрогазодинамика	
Типовой расчет по курсу «Гидрогазодинамика»	Чусов Сергей Ильич, доцент кафедры ПГТ

Выполнить:

- 1. Рассчитать геометрию сопла Лаваля, построить его по точкам, соединив точки плавными линиями.
- 2. Рассчитать и построить графики изменения параметров $\varepsilon = \frac{p}{p_0}, \ \tau = \frac{T}{T_0}, \ \lambda = \frac{c}{a_*}, \ q = \frac{F_*}{F}$ вдоль сопла на расчетном режиме и в режиме трубки Вентури.
- 3. Рассчитать и построить графики изменения параметров $\varepsilon = \frac{p}{p_0}, \ \tau = \frac{T}{T_0}, \ \lambda = \frac{c}{a_*}$ вдоль сопла при условии, что в сечении x=2 находится прямой скачок уплотнения.
- 4. Найти давление, скорость и температуру рабочей среды на расчетном режиме и в режиме со скачком уплотнения: за скачком и на выходном срезе сопла.
- 5. Найти расход рабочей среды на расчетном режиме.

Результаты привести в форме таблиц, графиков, расчетных формул с результатами расчета и кратких пояснений хода расчета. При расчете принять, что рабочая среда — воздух ($\kappa = 1, 4$).

Типовой расчет по курсу «Гидрогазодинамика»

Чусов Сергей Ильич, доцент кафедры ПГТ

Порядок расчета:

Проведем расчет для номера N = 45, профиля сопла №1, $p_0 = 1 \cdot 10^6$ Па, $T_0 = 600$ К.

1. Для упрощения дальнейшего расчета уточним для данного случая (N=45) расчетные формулы:

$$\overline{F}(x) = \frac{45 + \sqrt{45 \cdot x^2 + 1}}{1000} = \frac{1,0863 \cdot x^2 + 1}{1000}$$
 для $-2 \le x < 0$

$$\overline{F}(x) = \frac{1 + \frac{\sqrt{x}}{\frac{45 + \sqrt{45 + 1}}{1000}}}{1000} = \frac{1 + \frac{\sqrt{x}}{1,0868}}{1000}$$
 для $0 \le x < 3$

2. По этим расчетным формулам рассчитаем площади $\overline{F}(x)$ для всего сопла. Будем рассчитывать по следующим координатам x:

$$x = -2.0, -1.5; -1.0; -0.5; -0.25, -0.15$$
 — по формуле $\overline{F}(x) = \frac{1,0863 \cdot x^2 + 1}{1000}$

$$x = 0; 0,05; 0,15; 0,25; 0,5; 1,0; 1,5; 2; 2,5; 3$$
 — по формуле $\overline{F}(x) = \frac{1 + \frac{\sqrt{x}}{1,0868}}{1000}$

Результаты всех расчетов будем сводить в таблицу.

3. По полученным площадям $\overline{F}(x)$ (в дальнейшем обозначаемым как F_i) рассчитаем диаметры сопла по формуле:

$$d_i = \sqrt{\frac{4 \cdot F_i}{\pi}} \approx 1,128 \cdot \sqrt{F_i}$$

или радиусы сопла по формуле:

$$r_i \approx 0,564 \cdot \sqrt{F_i}$$
 или $r_i = d_i/2$

По диаметрам (или радиусам – смотря что удобнее) построим профиль сопла Лаваля (на отдельном листе или под другими будущими графиками).

4. По площадям F_* и F_i рассчитаем все значения q_i по формуле:

$$q_i = \frac{F_*}{F_i}$$

Здесь площадь F_* – это 0,001, соответственно, например, для x = -0.5 получается:

$$q_{-0.5} = \frac{F_*}{F_{0.5}} = \frac{0.001}{0.001272} = 0.78616 \approx 0.7862$$

5. По таблицам газодинамических функций по q_i найдем ε_i , λ_i , τ_i для расчетного режима и режима трубки Вентури, занесем всё в таблицу и построим соответствующие графики (на отдельном листе или над профилем сопла Лаваля).

Гидрогазодинамика Типовой расчет по курсу «Гидрогазодинамика» Чусов Сергей Ильич, доцент кафедры ПГТ

х	-2	-1.5	-1	-0.5	-0.25	-0.15	0	0.05	0.15	0.25	0.5	1	1.5	2	2.5	3	Примечания											
F_i , M ²	0.005345	0.003444	0.002086	0.001272	0.001068	0.001024	0.001	0.001206	0.001356	0.001460	0.001651	0.001920	0.002127	0.002301	0.002455	0.002594	$\overline{F}(x) = \frac{1,0863 \cdot x^2 + 1}{1000}$ (для $x = -2,0,-1,5;-1,0;-0,5;$ $-0,25;-0,15)$ $\overline{F}(x) = \frac{1 + \frac{\sqrt{x}}{1,0868}}{1000}$ (для $x = 0;0,05;0,15;0,25;$ $0,5;1,0;1,5;2;2,5;3)$											
d_i ,	0.08248	0.06620	0.05152	0.04023	0.03686	0.03610	0.03567	0.03917	0.04154	0.04310	0.04583	0.04943	0.05202	0.05411	0.05589	0.05745	$d_i = \sqrt{\frac{4 \cdot F_i}{\pi}} \approx 1,128 \cdot \sqrt{F_i}$											
r_i ,	0.04124	0.03310	0.02576	0.02012	0.01843	0.01805	0.01784	0.01959	0.02077	0.02155	0.02292	0.02471	0.02601	0.02706	0.02795	0.02873	$r_i = d_i/2$											
q_{i}	0.1871	0.2904	0.4794	0.7862	0.9364	0.9766	1	0.8292	0.7375	0.6849	0.6057	0.5208	0.4702	0.4346	0.4073	0.3855	$q_i = rac{F_*}{F_i}$, где $F_* = F_0$, т.е. в горле											
	0.9917	0.9798	0.0700	0.9426	0.9426 0.8206	0.8206 0.6	0.6049	0.6305	0.5283	0.7929	0.8476	0.8724	0.9040	0.9315	0.9451	0.9534	0.9593	0.9637	режим трубки Вентури									
\mathcal{E}_i	$\mathcal{E}_i \mid 0.9917 \mid 0.9798$		0.9420				0.8206	0.0200 0.0948	0.0948 0.630	0.6948	0.0303	0.3283	0.2561	0.1968	0.1690	0.1331	0.1010	0.0844	0.0737	0.0660	0.0602	расчетный режим						
λ_{i}	0.1193	0.8607	07 1.00	0.6204	0.5261	0.4791	0.4130	0.3470	0.3099	0.2850	0.2661	0.2511	режим трубки Вентури $(\text{по } \mathcal{E}_i^{\partial o 36 y \kappa})$															
																				1.3908	1.4930	1.5458	1.6210	1.6980	1.7435	1.7755	1.8000	1.8200
$ au_i$	0.9976	0.9942	0.9942	0.9942	0.9942	0.9942	0.9833	0.9451	0.9012	0.8765	0.8333	0.9359	0.9539	0.9617	0.9716	0.9799	0.9840	0.9865	0.9882	0.9895	режим трубки Вентури $({ m по} {\cal E}_i^{{\it дозвук}})$							
										0.6776	0.6285	0.6017	0.5621	0.5195	0.4931	0.4749	0.4600	0.4479	расчетный режим									

Типовой расчет по курсу «Гидрогазодинамика»

Чусов Сергей Ильич, доцент кафедры ПГТ

- 6. Рассчитаем скачок уплотнения в сечении x = 2,0 следующим образом.
- 1) Выписываем из таблицы значения ε_i и λ_i для сечения x=2,0 (для сверхзвукового режима:

$$\varepsilon_{1c\kappa} = 0.0737$$

$$\lambda_{1ck} = 1,7755$$

2) Из уравнения прямого скачка $\lambda_{1c\kappa} \cdot \lambda_{2c\kappa} = 1$ находим $\lambda_{2c\kappa}$:

$$\lambda_{2c\kappa} = \frac{1}{\lambda_{1c\kappa}} = \frac{1}{1,7755} = 0,5632$$

3) По $\lambda_{2c\kappa}=0,5632$ по таблице газодинамических функций определяем:

$$\varepsilon'_{2ck} = 0.8269$$

а также:

$$q'_{2c\kappa} = 0.7756$$
 ,

которое понадобится позже, для расчета параметров за скачком, и:

$$\tau_{2c\kappa} = 0.9471$$
 ,

которое понадобится позже, для построения параметров в скачке и за скачком.

4) Поскольку при переходе через фронт скачка давление полного торможения меняется, необходимо определить $\varepsilon_0 = \frac{p_0'}{n_0}$ по формуле:

$$\varepsilon_0 = \frac{p_0'}{p_0} = \lambda_{1c\kappa}^2 \cdot \left(\frac{(\kappa+1) - (\kappa-1) \cdot \lambda_{1c\kappa}^2}{(\kappa+1) - \frac{(\kappa-1)}{\lambda_{1c\kappa}^2}} \right)^{\frac{1}{\kappa-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,4+1) - \frac{(1,4-1)}{(1,7755)^2}} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,4+1) - \frac{(1,4-1)}{(1,7755)^2}} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,4+1) - \frac{(1,4-1)}{(1,7755)^2}} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,4-1) \cdot (1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,4-1) \cdot (1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,4-1) \cdot (1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,4-1) \cdot (1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,4-1) \cdot (1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,4-1) \cdot (1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,4-1) \cdot (1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,4-1) \cdot (1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,7755)^2}{(1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,4-1) \cdot (1,7755)^2}{(1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,4-1) \cdot (1,4-1)}{(1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,4-1) \cdot (1,4-1) \cdot (1,4-1)}{(1,7755)^2} \right)^{\frac{1}{1,4-1}} = (1,7755)^2 \cdot \left(\frac{(1,4+1) - (1,4-1) \cdot (1,4-1) \cdot (1,4-1)}{(1,4-1) \cdot (1,4-1) \cdot (1,4-1) \cdot (1,4-1)} \right)$$

$$= (1,7755)^{2} \cdot \left(\frac{2,4-0,4\cdot(1,7755)^{2}}{2,4-\frac{0,4}{(1,7755)^{2}}}\right)^{2,5} = 3,15240 \cdot \left(\frac{1,13904}{2,27311}\right)^{2,5} = 0,5603$$

5) Действительное значение $\varepsilon_{2c\kappa}$:

$$\varepsilon_{2c\kappa} = \varepsilon'_{2c\kappa} \cdot \varepsilon_0 = 0,8269 \cdot 0,5603 = \mathbf{0,4633}$$

7. Рассчитаем распределение параметров за скачком уплотнения.

Расчет распределения параметров за скачком уплотнения проводится по формуле:

$$q_i' \cdot F_i = q_{2c\kappa}' \cdot F_{c\kappa}$$
 , отсюда:

Типовой расчет по курсу «Гидрогазодинамика»

Чусов Сергей Ильич, доцент кафедры ПГТ

$$q_i' = \frac{q_{2c\kappa}' \cdot F_{c\kappa}}{F_i}$$
 , где:

- $q_{2c\kappa}' = 0,7756$ определено ранее по таблице газодинамических функций по $\lambda_{2c\kappa} = 0,5632$

- $F_{c\kappa}$ — сечение, где произошел скачок, т.е. в данном случае в сечении x=2,0 : $F_{c\kappa}=0,002301~\text{m}^2$

Для точки x = 2,5

a)
$$q'_{2,5} = \frac{0,7756 \cdot 0,002301}{0,002455} = 0,7270$$

б) по $q_{2,5}'=0.7270$ по таблице газодинамических функций <u>в дозвуковой области</u> определяем $\varepsilon_{2,5}'=0.8530$, $\lambda_{2,5}'=0.5163$ и $\tau_{2,5}=0.9556$

в) действительное значение $\varepsilon_{2.5} = \varepsilon_{2.5}' \cdot \varepsilon_0 = 0.8530 \cdot 0.5603 = 0.4779$

Для точки x = 3,0

a)
$$q'_{3,0} = \frac{0.7756 \cdot 0.002301}{0.002594} = 0.6880$$

б) по $q_{3,0}'=0,6880$ по таблице газодинамических функций <u>в дозвуковой области</u> определяем $\varepsilon_{3,0}'=0,8713$, $\lambda_{3,0}'=0,4813$ и $\tau_{3,0}^{_{3a}-c\kappa}=0,9614$

- в) действительное значение $\varepsilon_{3,0}=\varepsilon_{3,0}'\cdot\varepsilon_0=0,8713\cdot0,5603=$ **0,4882**
- 8. Построим на отдельном листе графики зависимостей $\varepsilon(x)$ и $\tau(x)$ для режима со скачком уплотнения и режима за скачком (т.е. для сечения 2 (где произошел скачок), а также для сечений 2,5 и 3,0 за скачком).

Построим на том же листе, где $\lambda(x)$ для расчетного режима и режима трубки Вентури, график зависимости $\lambda(x)$ для режима со скачком уплотнения и режима за скачком (т.е. для сечения 2 (где произошел скачок), а также для сечений 2,5 и 3,0 за скачком).

- 9. Рассчитаем давление, скорость и температуру рабочей среды за скачком и на выходном срезе сопла, на расчетном режиме и в режиме со скачком уплотнения.
- 1) Рассчитаем давления в режиме со скачком уплотнения: за скачком и на выходном срезе сопла.
- а) По давлению $p_0 = 1 \cdot 10^6$ Па (из условия) и $\varepsilon_{2c\kappa} = 0.4633$ (за скачком, см. расчет) рассчитаем давление рабочей среды за скачком уплотнения:

из
$$\varepsilon_{2c\kappa} = \frac{p_{2c\kappa}}{p_0}$$
 \rightarrow $p_{2c\kappa} = \varepsilon_{2c\kappa} \cdot p_0 = 0,4633 \cdot 1 \cdot 10^6 =$ **463 300 Па = 463,3 кПа**

б) По давлению $p_0 = 1 \cdot 10^6$ Па (из условия) и $\varepsilon_{3,0} = 0,4882$ (за скачком, в выходном сечении сопла, см. расчет) рассчитаем давление рабочей среды на расчетном режиме:

Типовой расчет по курсу «Гидрогазодинамика»

Чусов Сергей Ильич, доцент кафедры ПГТ

из
$$\varepsilon_{3,0} = \frac{p_{3,0}}{p_0}$$
 \rightarrow $p_{3,0} = \varepsilon_{3,0} \cdot p_0 = 0,4882 \cdot 1 \cdot 10^6 =$ **488 200 Па = 488,2 кПа**

Давление на срезе сопла в расчетном режиме равно давлению в пространстве за соплом, которого мы не знаем, поэтому не можем его определить.

- 2) Рассчитаем скорость рабочей среды на расчетном режиме и скорости в режиме со скачком уплотнения: перед и за скачком и на выходном срезе сопла.
- а) По температуре $T_0 = 600 \text{ K}$ рассчитаем критическую скорость:

$$a_* = \sqrt{\frac{2 \cdot \kappa}{\kappa + 1} \cdot R \cdot T_0} = \sqrt{\frac{2 \cdot 1, 4}{1, 4 + 1} \cdot 287 \cdot 600} = 448,2 \text{ m/c}$$

б) По $\lambda_{3,0}^{p.p.} = 1,82$ (на расчетном режиме, см. таблицу) и $a_* = 448,2$ м/с рассчитаем скорость потока на расчетном режиме:

из
$$\lambda_{3,0}^{p.p.} = \frac{c_{3,0}^{p.p.}}{a_*}$$
 \rightarrow $c_{3,0}^{p.p.} = \lambda_{3,0}^{p.p.} \cdot a_* = 1,82 \cdot 448,2 = 815,7 м/c$

в) По $\lambda_{1c\kappa} = 1,7755$ (перед скачком, на линии расчетного режима) и $a_* = 448,2$ м/с рассчитаем скорость потока перед скачком:

из
$$\lambda_{1c\kappa} = \frac{c_{1c\kappa}}{a_*}$$
 \rightarrow $c_{1c\kappa} = \lambda_{1c\kappa} \cdot a_* = 1,7755 \cdot 448, 2 = 795,8 м/с$

e) По $\lambda_{2c\kappa}=0.5632$ (за скачком, см. расчет) и $a_*=448.2$ м/с рассчитаем скорость потока за скачком:

из
$$\lambda_{2c\kappa} = \frac{c_{2c\kappa}}{a_*}$$
 \rightarrow $c_{2c\kappa} = \lambda_{2c\kappa} \cdot a_* = 0,5632 \cdot 448,2 = 252,4$ м/с

 ∂) По $\lambda'_{3,0} = 0,4813$ (за скачком, в выходном сечении сопла, см. расчет) и $a_* = 448,2$ м/с рассчитаем скорость потока за скачком, в выходном сечении сопла:

из
$$\lambda'_{3,0} = \frac{c'_{3,0}}{a}$$
 \rightarrow $c'_{3,0} = \lambda'_{3,0} \cdot a_* = 0,4813 \cdot 448, 2 = 215,7 м/с$

- 3) Рассчитаем температуру рабочей среды на выходном срезе сопла на расчетном режиме и температуру в режиме со скачком уплотнения: за скачком и на выходном срезе сопла.
- а) По $\tau_{3,0}^{p.p.} = 0,4479$ (на расчетном режиме, см. таблицу) и $T_0 = 600$ К рассчитаем температуру потока на выходном срезе сопла на расчетном режиме:

из
$$au_{3,0}^{p.p.} = \frac{T_{3,0}^{p.p.}}{T_0}$$
 \rightarrow $T_{3,0}^{p.p.} = au_{3,0}^{p.p.} \cdot T_0 = 0,4479 \cdot 600 = 268,7 \text{ K} \text{ (или -4,3°C)}$

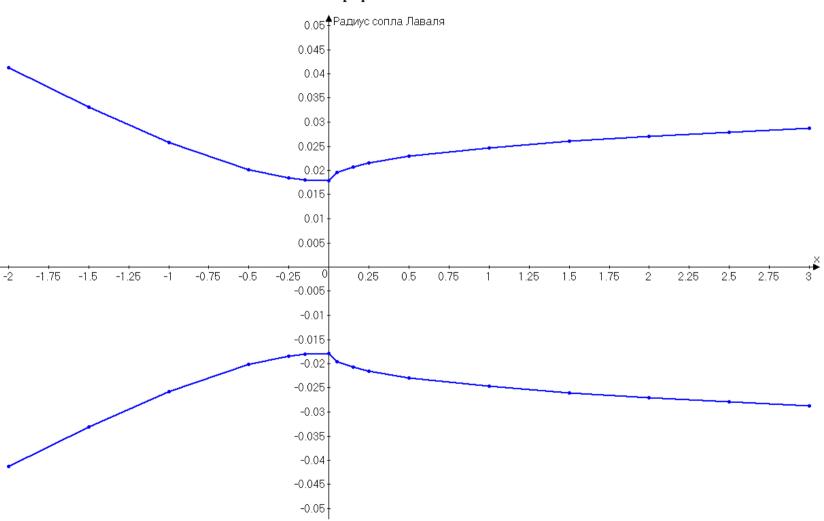
б) По $\tau_{2c\kappa} = 0,9471$ и $T_0 = 600$ К рассчитаем температуру потока за скачком:

из
$$\tau_{2c\kappa} = \frac{T_{2c\kappa}}{T_0}$$
 \rightarrow $T_{2c\kappa} = \tau_{2c\kappa} \cdot T_0 = 0,9471 \cdot 600 = 568,3 \text{ K}$ (или 295,3 0 C)

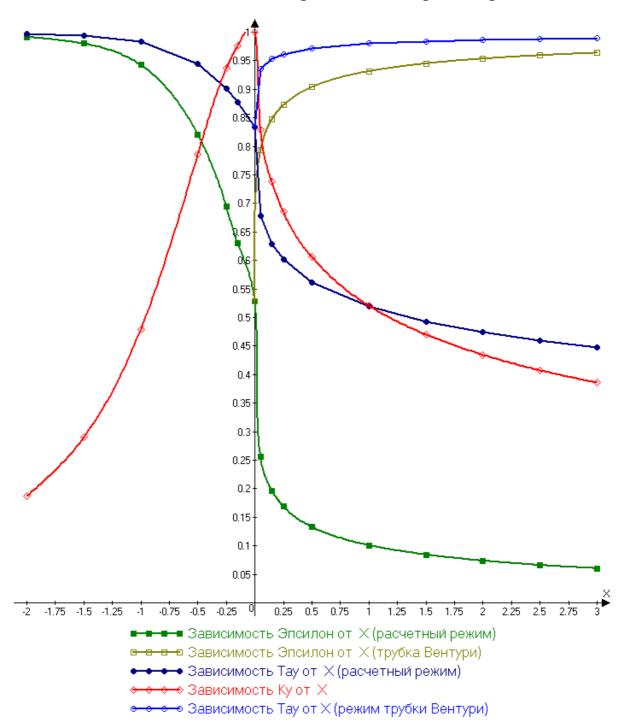
Гидрогазодинамика Типовой расчет по курсу «Гидрогазодинамика» Чусов Сергей Ильич, доцент кафедры ПГТ

 ϵ) По $au_{3,0}^{3a_-c\kappa}=0.9614$ и $T_0=600$ К рассчитаем температуру потока на выходном срезе сопла в режиме со скачком уплотнения:

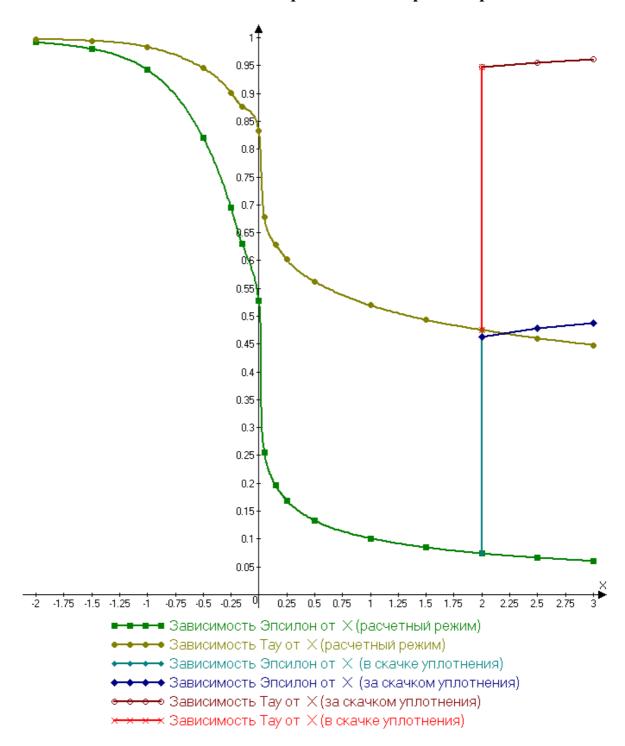
из
$$au_{3,0}^{3a_c\kappa} = \frac{T_{3,0}^{c\kappa}}{T_0}$$
 \rightarrow $T_{3,0}^{c\kappa} = au_{3,0}^{3a_c\kappa} \cdot T_0 = 0,9614 \cdot 600 = 576,8 \text{ K} \text{ (или 303,8}^{0}\text{C})$

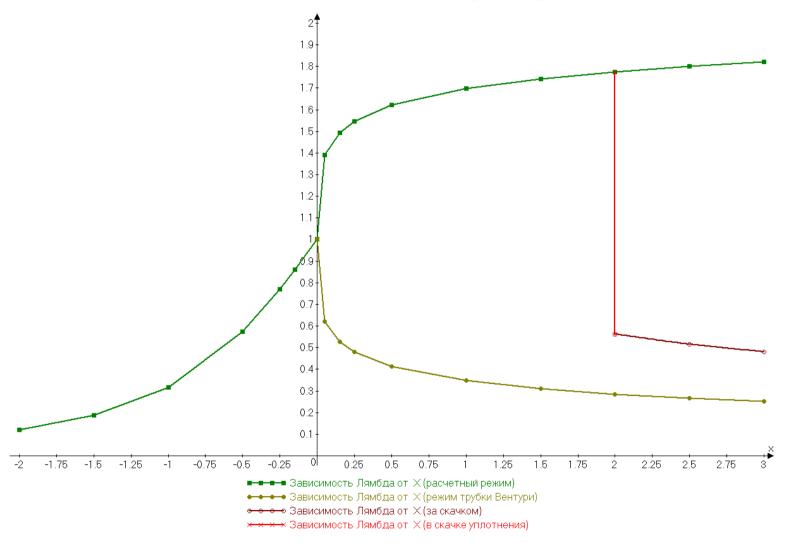

10. Рассчитаем расход рабочей среды на расчетном режиме.

Этот расход в расчетном режиме может быть получен по выражению для критического расчета через суживающееся сопло:


$$m_{cyxc._conna} = m_* = A \cdot \frac{F_* \cdot p_0}{\sqrt{T_0}} = 0,0404 \cdot \frac{0,001 \cdot 1 \cdot 10^6}{\sqrt{600}} = 1,649 \text{ kg/c}$$

Гидрогазодинамика	
Типовой расчет по курсу «Гидрогазодинамика»	Чусов Сергей Ильич, доцент кафедры ПГТ




Гидрогазодинамика	
Типовой расчет по курсу «Гидрогазодинамика»	Чусов Сергей Ильич, доцент кафедры ПГТ

Зависимости ε и τ от координаты x на разных режимах

Гидрогазодинамика			
Типовой расчет по курсу «Гидрогазодинамика»	Чусов Сергей Ильич, доцент кафедры ПГТ		

Зависимости λ от координаты x на разных режимах

