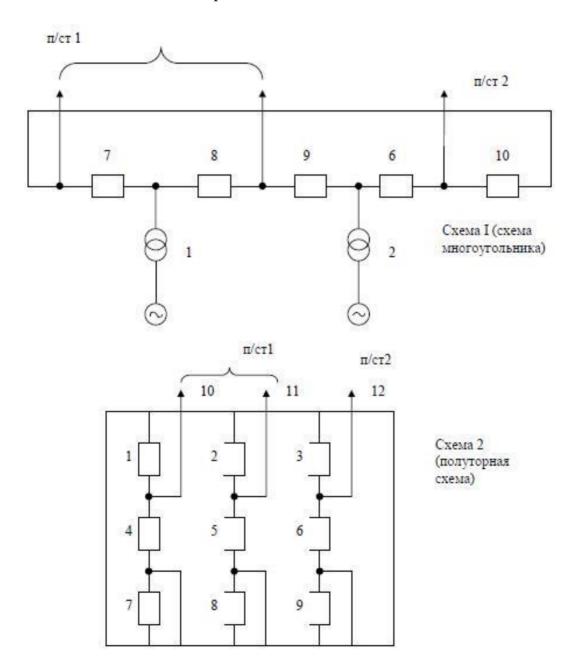
Надежность электроснабжения


Самостоятельная работа

Задание 1 РАСЧЕТ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ РАСПРЕДЕЛИТЕЛЬНОГО УСТРОЙСТВА

Цель: составить таблицу расчетных связей событий, режимов и аварий для заданной схемы РУ без учета отказов устройств РЗА; рассчитать показа-тели надежности схемы РУ для наиболее тяжелых видов аварий.

Исходные данные:

1. Схема главных электрических соединений РУ.

- 2. Показатели надежности элементов схем (для двух схем).
- а) основные показатели надежности выключателя

Вариант	ω_1 ,	ω_2 ,	Тв, ч	μ ,	Т _п ,ч
	1/год	1/год		1/год	
2	0,03	0,01	200	0,3	350

б) основные показатели надежности генераторов и ЛЭП

Элемент	Показатели надежности						
	ω_1 ,	Т _в ,ч	μ ,	Т _п , ч			
	1/год		1/год				
Блок	0,25	600	1	500			
ЛЭП	0,5	18	8	80			

в) t_p =3 года (расчетный период существования данной схемы РУ)

Таблица 1.3

Вариант	Номер варианта по выключателям	Длина ЛЭП в (км)	Схема (номер)
2	2	120	1

3. Расчетные виды аварий для схем РУ: Для схемы 1

А=1 - потеря блока.

A=2 - потеря одной ЛЭП (п/ст 1).

A=3 - потеря ЛЭП на п/ст 2.

А=4 - потеря блока и линии на п/ст 2.

А=5 - потеря блока и линии на п/ст 1.

A=6 - потеря одной ЛЭП п/ст 1 и ЛЭП п/ст 2.

А=7 - потеря одной ЛЭП п/ст 1 и ЛЭП п/ст 2 и блока.

А=8 - потеря одного блока (при ремонте второго).

А=9 - потеря транзита на п/ст 1.

А=10 - погашение всей схемы.

Для схемы 2.

A=1 - потеря ЛЭП на п/ст (Л1, Л2).

A=2 - потеря ЛЭП на п/ст 2 (Л3).

A=3 - потеря транзита с п/ст 1 (Л1+Л2).

A=4 - потеря одной ЛЭП п/ст 1 и источника (Л1+ Γ или Л2+ Γ).

A=6 - потеря ЛЭП п/ст 2 и источника (ЛЗ+Г).

A=7 - потеря одного источника (Γ 1, Γ 2, Γ 3).

А=8 - потеря двух источников.

Указания к выполнению

Основной информацией для расчета надежности схемы РУ является матрица расчетных связей событий (i), аварий (A_l) и режимов (j).

Вид этой матрицы следующий:

i	j								
	0	1	2		m				
1	A_l	-	A_l	•••	A_l				
2	A_l	A_l	-	•••	A_l				
n	A_l	A_l	A_l		-				

Под событием і понимается отказ элемента РУ. Под режимом ј понимается состояние элемента РУ, то есть находится он в ремонте или в нормальном ре-жиме.

Под аварией понимается последствие наложения отказа і- го элемента РУ на ремонт (нормальный режим) і-го элемента РУ.

Коэффициент ремонтного режима определяется как

$$K_{j} = \frac{\omega_{i} \cdot T_{6 \ i} + \mu_{i} \cdot T_{ni}}{8760} , \qquad (1.6)$$

а коэффициент нормального режима:

$$K_0 = 1 - \sum_{j=1}^{m} K_j. {1.7}$$

После заполнения матрицы расчетных связей определяется математическое ожидание числа аварий вида A_1 без учета отказа устройств релейной защиты и автоматики:

$$M(N_{A_{i}}) = t_{p} \cdot \sum_{j=0}^{m} \sum_{j=1}^{n} K_{j} \cdot \omega_{ij} \cdot X_{ij}^{A_{i}},$$
(1.8)

где $X_{ij}^{A_l} = 1$, если в матрице на пересечение і-й строки и ј-го столбца находится номер расчетной аварии A_l ;

$$X_{ij}^{A_l} = 0,$$
 - в остальных случаях.

Затем определяется среднее время восстановления схемы РУ после аварии вида $A_{\,l\,}$ (без учета отказов устройств РЗА)

$$T_B^{A_i} = \frac{t_p}{M(N_{A_i})} \cdot (M(N_{A_i})T_{Bij}), \tag{1.9}$$

где T_{Bij} - время восстановления нормальной работы РУ при повреждении і-го элемента и ремонте j-го элемента.

Задание 2 ОПРЕДЕЛЕНИЕ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ НЕДООТПУСКА ЭЛЕКТРОЭНЕРГИИ В СИСТЕМЕ

Цель: определить математическое ожидание недоотпуска электроэнергии в системе методом "перебора коэффициентов", подсчитать математическое ожидание ущерба от недоотпуска.

Исходные данные

- 1. Единичная мощность агрегатов в системе 100 МВт.
- 2. Расчетная ступень мощности $p_0 = 50 \text{ MBt}.$
- 3. Количество агрегатов в системе n и коэффициент вынужденного простоя $K_{\mbox{\scriptsize B}}$:

Вариант	n	кВ
2	6	0,04

4. Суточный график нагрузки:

для n=6

Нагрузка,	150	250	350	400	450	500	550	600
МВт								
Продолжит.,	5	7	4	1	2	2	2	1
t(j, P ₀), ч								

5. Величина удельного ущерба по системе:

а)
$$Y_0$$
= 1,0 руб/кВт· ч для n=5 и 6;

б) Y_0 = 1,3 руб/кВт- ч для n=7 и 8.

Указания к выполнению

Принимается величина расчетной ступени мощности P_{θ} , равной единичной мощности агрегатов в системе, или в целое число раз меньшее ее.

Определим коэффициент готовности m элементов из n для рассматриваемых ступеней мощности

$$K_{\varepsilon}^{m=i\cdot P_0} = C_n^m \cdot K_{\varepsilon}^m \cdot K_{\varepsilon}^{n-m}, \qquad (2.10)$$

где

$$C_n^m = \frac{n!}{m! \cdot (n-m)!}.$$

Суточный график нагрузки перестроим таким образом, чтобы все его ступени были равны выбранной величине $P_{\it 0}$.

Величину коэффициента K_H (коэффициент, характеризующий продолжительность нагрузки) определим как

$$K_H^{j \cdot P_0} = \frac{t(j \cdot P_0)}{24},$$
 (2.11)

где $t(j \cdot P_0)$ - длительность существования нагрузки, равной величине $j \cdot P_0$ в часах.

Дефицит мощности в системе может возникнуть только в случае, если мощность нагрузки системы будет превышать генерирующую мощность, то есть

$$D = j \cdot P_0 - i \cdot P_0 = K \cdot P_0, \qquad (2.12)$$

где K - коэффициент дефицита мощности.

Тогда вероятность появления в энергосистеме дефицита мощности, равного $K \cdot P_0$, определится как произведение коэффициентов готовности генерирующих источников $K_z^{m-i\cdot P_0}$ и коэффициентов состояния нагрузок $K_z^{j\cdot P_0}$:

$$K_{g}^{K \cdot P_{0}} = \sum_{i} K_{z}^{i \cdot P_{0}} \cdot K_{\varkappa}^{j \cdot P_{0}}$$
 при $K = i - j$, (2.13)

где 1 - число вариантов генерации и потребления энергии, в которых выполняется условие, что K=i-j.

Математическое ожидание величины недоотпуска электроэнергии за год вследствие дефицита мощности выразится как

$$\Delta \Theta_{g} = 8760 \cdot P_{0} \sum_{K} k K_{g}^{k \cdot P_{0}}. \tag{2.14}$$

Математическое ожидание ущерба от недоотпуска электроэнергии определится следующим образом:

$$M(Y) = y_0 \cdot \Delta \mathfrak{I}_g, \tag{2.15}$$

где y_0 - удельный ущерб от недоотпуска электроэнергии.

Задание 3

РАСЧЕТ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ УЩЕРБА ПОТРЕБИТЕЛЕЙ МЕТОДОМ СТАТИСТИЧЕСКИХ ИСПЫТАНИЙ

Цель: определить математическое ожидание ущерба потребителей методом статистических испытаний.

Исходные данные

1. Функция распределения отказов $(F(\tau_H))$ по часам суток.

τн, Ч	0	4	8	12	16	20	24
$F(\tau_H)$	0	0,17	0,36	0,58	0,7	0,86	1,0

2.Зависимость величины удельных ущербов от недоотпуска мощности.

У ОА,ОБ; руб.кВт	0	4	4
Тф, ч	0	17	24

3. Суточный график нагрузки потребителей (одинаковый для всего года)

Т, ч	0-4	5-6	7-8	9-12	13-15	16-20	21-24
P _n , МВт	100	120	170	190	90	150	70

- Время восстановления (Т_В).
- Мощность потребителя Б (P_Б).
- 6. Параметр потока отказов ЛЭП (ω) .
- 7. Удельный ущерб от недоотпуска электроэнергии потребителя A и B $(y_{o_A}^{"}, y_{o_B}^{"})$.
- 8. Ряд псевдослучайных чисел для определения времени начала перерыва электроснабжения R/

Исходные данные с 4 по 8 приведены в таблице.

Указания к выполнению

Имея ряд псевдослучайных чисел R, моделирующих функции распределения отказов по часам суток, можно определить, пользуясь зависимостью

 $F(\tau_{\tt H}) = f(\tau_{\tt H})$, момент наступления аварии $\tau_{\tt H}$, имея в виду, что $F(\tau_{\tt H}) = = R$.

Вариант		P_{E} ,	ω,	y_{OA} ,	<i>уов</i> ",	
	T_B , Ч	МВт	1/год	руб/кВт*ч	руб/кВт*ч	$Rpprox F(\pmb{ au}_{_H})$
2	9	65	0,35	0,45	0,25	0,2; 0,4; 0,6; 0,8; 1,0

Затем, используя суточный график потребителей A и Б и зная время восстановления схемы электроснабжения после аварии, определим дефициты мощности и энергии потребителей A и Б ΔP_A , ΔP_B , ΔP_A и ΔP_B .

Далее рассчитывается величина суммарного ущерба в первом опыте

$$Y = \Delta P_F \cdot y_{OA} \cdot (T_{\phi}) + \Delta P_E \cdot y_{OE} \cdot (T_{\phi}) + \Delta \Theta_A \cdot y_{OA} + \Theta_E \cdot y_{OE}$$
(3.9)

Расчеты повторяются N раз, после чего рассчитывается математическое ожидание суммарного ущерба потребителей

$$M(Y) = \frac{\omega}{N} \cdot \sum_{i=1}^{N} y_i,$$
(3.10)

где ω - параметр потока отказов элементов электроснабжения потребителей.

Задание 4 ВЫБОР АВАРИЙНОГО РЕЗЕРВА МОЩНОСТИ В ЭЭС

Цель: определить оптимальную величину аварийного резерва мощности в энергосистеме.

Исходные данные

- 1. Единичная мощность агрегата в ЭЭС N_а равна 100 МВт.
- 2. Количество агрегатов в системе (n), тип суточного графика нагрузки и коэффициент вынужденного простоя агрегата $K_{\scriptscriptstyle B}$

		Тип сут.	
		граф.	
Вариант	n	нагрузки	Кв
2	50	2	0,03

4. Суточные графики нагрузки

Тип 1

Нагрузка,	1500	2000	2500	3000	3500	4000
МВт						
Продолжи-						
тельность,	8	5	3	3	2	3
час						

Тип 2

Нагрузка, МВт	1500	2000	2500	3000	4000	4500	5000
Продолжи тельность, час	5	7	4	2	2	3	1

Нагрузка,	2000	2500	3000	3500	4500	5000	6000
МВт							
Продолжите льность, час	6	3	5	2	3	2	3

Тип 4

Нагрузка, МВт	2500	3000	4000	4500	5000	6000	7000
Продолжите льность, час	6	5	4	3	2	2	2

- 4. Величина удельного ущерба от недоотпуска электрической энергии в целом по системе составляет 6 руб./ КВтч.
- 5. Стоимость одного резервного агрегата в ЭЭС равна 150 млн. руб.
- 6. Заданный срок окупаемости равен 8 лет.

Указания к выполнению

Определим вероятность простоя m агрегатов из n по формуле:

$$P_n^m = \frac{a^m e^{-a}}{m!},$$
 (4.21)

где a- математическое ожидание числа агрегатов, находящихся в аварийном простое.

Составим ряд вероятностей вида

$$P_n^0, P_n^1, P_n^2, \dots, P_n^m$$
 (4.22)

Если резерв в ЭЭС отсутствует, то можем рассчитать дефицит мощности как

$$D_o = aN_a = nK_eN_a. (4.23)$$

При наличии в ЭЭС одного резервного агрегата средняя величина дефицита мощности будет составлять

$$D_1 = N \prod_{\substack{a \ge 1 \\ m=2}} P_n^m, \qquad (4.24)$$

Для расчета величины недотпуска электроэнергии за год необходимо перестроить суточные графики нагрузки в график нагрузки по продолжительности и по нему определить изменение величины недотпуска энергии при переходе от варианта с r резервными агрегатами к варианту с (r+1) резервными агрегатами.

Далее рассчитывается изменение ущербов при переходе в общем случае от варианта с r резервными агрегатами к варианту с (r+1) резервными агрегатами (см.рис.4.1).

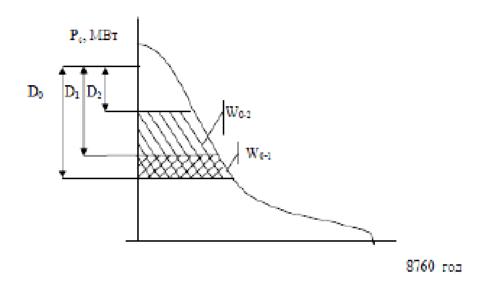


Рис. 4.1. Изменение ущерба от числа резервных агрегатов

$$M(Y_{0-1}) = y_0 W_{0-1}, \quad M(Y_{1-2}) = y_0 W_{1-2}, ..., M(Y_{r,r+1}) = y_0 W_{r,r+1}.$$
 (4.26)

Рассчитав ряд сроков окупаемости и сравнив его с нормативным, можно выбрать вариант с оптимальным количеством резервных агрегатов в ЭЭС

$$T_{r,r+1} = (K_{vb} = N_a) / M(Y_{r,r+1}),$$
 (4.27)

 $T_{r,\,r+1} = (K_{y\partial} - N_a) \ / \ M(V_{r,\,r+1}),$ где $K_{y\partial} -$ удельные капиталовложения в 1 Мвт резервной мощности;

 N_a — мощность резервного агрегата;

 $\Delta M(Y)$ — изменение математического ожидания ущерба от недоотпуска энергии, определяемого как это показано на рисунке.

Оптимальным следует считать тот вариант установки резервных агрегатов, который удовлетворяет следующему условию.

Если $T_{r, r+1} < T_H$, $a T_{r+1, r+2} > T_H$ то оптимальным следует признать вариант с установкой числа резервных агрегатов, равных (r+1).